Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/83913
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Weien
dc.contributor.authorXing, Guichuanen
dc.contributor.authorWu, Boen
dc.contributor.authorWu, Xiangyangen
dc.contributor.authorLi, Mingjieen
dc.contributor.authorDu, Binen
dc.contributor.authorWei, Qien
dc.contributor.authorGuo, Jiaen
dc.contributor.authorYeow, Edwin K. L.en
dc.contributor.authorSum, Tze Chienen
dc.date.accessioned2017-07-14T04:25:29Zen
dc.date.accessioned2019-12-06T15:34:29Z-
dc.date.available2017-07-14T04:25:29Zen
dc.date.available2019-12-06T15:34:29Z-
dc.date.issued2017en
dc.identifier.citationXing, G., Wu, B., Wu, X., Li, M., Du, B., Wei, Q., et al. (2017). Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 8, 14558-.en
dc.identifier.issn2041-1723en
dc.identifier.urihttps://hdl.handle.net/10356/83913-
dc.description.abstractThe slow bimolecular recombination that drives three-dimensional lead-halide perovskites’ outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm−3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.en
dc.description.sponsorshipMOE (Min. of Education, S’pore)en
dc.format.extent9 p.en
dc.language.isoenen
dc.relation.ispartofseriesNature Communicationsen
dc.rights© 2017 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en
dc.subjectMaterials for Devicesen
dc.subjectOptical Physicsen
dc.titleTranscending the slow bimolecular recombination in lead-halide perovskites for electroluminescenceen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doi10.1038/ncomms14558en
dc.description.versionPublished versionen
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 1

469
Updated on Mar 22, 2024

Web of ScienceTM
Citations 1

438
Updated on Oct 27, 2023

Page view(s) 20

722
Updated on Mar 27, 2024

Download(s) 50

133
Updated on Mar 27, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.