Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/84508
Title: | Graph embedding based feature selection | Authors: | Wei, Dan. Li, Shutao. Tan, Mingkui. |
Keywords: | DRNTU::Engineering::Computer science and engineering | Issue Date: | 2012 | Source: | Wei, D., Li, S., & Tan, M. (2012). Graph embedding based feature selection. Neurocomputing, 93, 115-125. | Series/Report no.: | Neurocomputing | Abstract: | Usually many real datasets in pattern recognition applications contain a large quantity of noisy and redundant features that are irrelevant to the intrinsic characteristics of the dataset. The irrelevant features may seriously deteriorate the learning performance. Hence feature selection which aims to select the most informative features from the original dataset plays an important role in data mining, image recognition and microarray data analysis. In this paper, we developed a new feature selection technique based on the recently developed graph embedding framework for manifold learning. We first show that the recently developed feature scores such as Linear Discriminant Analysis score and Marginal Fisher Analysis score can be seen as a direct application of the graph preserving criterion. And then, we investigate the negative influence brought by the large noise features and propose two recursive feature elimination (RFE) methods based on feature score and subset level score, respectively, for identifying the optimal feature subset. The experimental results both on toy dataset and real-world dataset verify the effectiveness and efficiency of the proposed methods. | URI: | https://hdl.handle.net/10356/84508 http://hdl.handle.net/10220/13651 |
DOI: | 10.1016/j.neucom.2012.03.016 | Schools: | School of Computer Engineering | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCSE Journal Articles |
SCOPUSTM
Citations
20
13
Updated on May 3, 2025
Web of ScienceTM
Citations
20
13
Updated on Oct 28, 2023
Page view(s) 50
556
Updated on May 7, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.