Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/84767
Title: | EEG-based valence level recognition for real-time applications | Authors: | Liu, Yisi. Sourina, Olga. |
Keywords: | DRNTU::Engineering::Electrical and electronic engineering | Issue Date: | 2012 | Source: | Liu, Y.,& Sourina, O. (2012). EEG-based Valence Level Recognition for Real-Time Applications. 2012 International Conference on Cyberworlds, 53-60. | Conference: | International Conference on Cyberworlds (2012 : Darmstadt, Germany) | Abstract: | Emotions are important in human-computer interaction. Emotions could be classified based on 3-dimensional Valence-Arousal-Dominance model which allows defining any number of emotions even without discrete emotion labels. In this paper, we proposed a real-time EEG-based subject-dependent valence level recognition algorithm, where the thresholds were used to identify different levels of the valence dimension of the human emotion. The algorithm was tested by using the EEG data labeled with valence levels. The algorithm could identify valence levels continuously. The algorithm was tested with the experiment data and with the benchmark affective EEG database DEAP where up to 9 levels of valence dimension with high/low dominance were recognized. Then, the algorithm was applied to recognize 16 emotions defined by high/low arousal, high/low dominance and 4 levels of valence. At least 14 electrodes should be used to get the better accuracy. The proposed algorithm could be implemented in different real-time applications such as emotional avatar and E-learning systems. | URI: | https://hdl.handle.net/10356/84767 http://hdl.handle.net/10220/12706 |
DOI: | 10.1109/CW.2012.15 | Schools: | School of Electrical and Electronic Engineering | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | EEE Conference Papers |
SCOPUSTM
Citations
20
31
Updated on Mar 13, 2025
Web of ScienceTM
Citations
10
23
Updated on Oct 24, 2023
Page view(s) 50
628
Updated on Mar 15, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.