Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/84795
Title: Conjunctive patches subspace learning with side information for collaborative image retrieval
Authors: Zhang, Lining.
Wang, Lipo.
Lin, Weisi.
Issue Date: 2012
Source: Zhang, L., Wang, L., & Lin, W. (2012). Conjunctive Patches Subspace Learning With Side Information for Collaborative Image Retrieval. IEEE Transactions on Image Processing, 21(8), 3707-3720.
Series/Report no.: IEEE transactions on image processing
Abstract: Content-based image retrieval (CBIR) has attracted substantial attention during the past few years for its potential practical applications to image management. A variety of relevance feedback schemes have been designed to bridge the semantic gap between low-level visual features and high-level semantic concepts for an image retrieval task. Various collaborative image retrieval (CIR) schemes aim to utilize the user historical feedback log data with similar and dissimilar pairwise constraints to improve the performance of a CBIR system. However, existing subspace learning approaches with explicit label information cannot be applied for a CIR task although the subspace learning techniques play a key role in various computer vision tasks, e.g., face recognition and image classification. In this paper, we propose a novel subspace learning framework, i.e., conjunctive patches subspace learning (CPSL) with side information, for learning an effective semantic subspace by exploiting the user historical feedback log data for a CIR task. CPSL can effectively integrate the discriminative information of labeled log images, the geometrical information of labeled log images, and the weakly similar information of unlabeled images together to learn a reliable subspace. We formulate this problem into a constrained optimization problem and then present a new subspace learning technique to exploit the user historical feedback log data. Extensive experiments on both synthetic datasets and a real-world image database demonstrate the effectiveness of the proposed scheme in improving the performance of a CBIR system by exploiting the user historical feedback log data.
URI: https://hdl.handle.net/10356/84795
http://hdl.handle.net/10220/13502
ISSN: 1057-7149
DOI: 10.1109/TIP.2012.2195014
Rights: © 2012 IEEE
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.