Please use this identifier to cite or link to this item:
Title: Community quorum sensing signalling and quenching : microbial granular biofilm assembly
Authors: Tan, Chuan Hao
Koh, Kai Shyang
Xie, Chao
Zhang, Joela
Tan, Xiao Hui
Lee, Guo Ping
Zhou, Yan
Ng, Wun Jern
Rice, Scott A.
Kjelleberg, Staffan
Keywords: DRNTU::Science::Biological sciences::Microbiology
Issue Date: 2015
Source: Tan, C. H., Koh, K. S., Xie, C., Zhang, J., Tan, X. H., Lee, G. P., et al. (2015). Community quorum sensing signalling and quenching: Microbial granular biofilm assembly. NPJ biofilms and microbiomes, 1, 15006-.
Series/Report no.: NPJ biofilms and microbiomes
Abstract: Background: Recent reports exploring the role of gradients of quorum sensing (QS) signals in functional activated sludge have raised the question of whether shared systems of signalling synthesis and degradation, or quorum quenching (QQ), across the community inform of the means by which QS biology regulate floccular and granular biofilm assembly. Aims: In this study, we aimed to explore the species origin and interactive role of QS and QQ activities in such highly diverse microbial biofilm communities. Methods: Here, such aims were addressed systematically by a comprehensive multi-pronged RNA-sequencing, microbiological and analytical chemistry experimental approach, using two related but independently evolved floccular and granular sludge communities. Results: Our data revealed a distinct difference between the QS and QQ potentials of the two communities, with different species largely displaying either QS or QQ functions. The floccular sludge community showed a high rate of QQ activity, and this rate was dependent on the acyl chain length demonstrating specificity of degradation. When the floccular biomass was transformed into the granular sludge, the QQ activity of the community was reduced by 30%. N-acyl homoserine lactones with four to eight carbons on the acyl chain accumulated at the granular stage, and their concentrations were at least threefold higher than those of the floccular stage. These findings corroborated meta-community analysis where a major shift in the dominant species from potential signal quenchers to producers was observed during the transition from flocs to granules, indicating the role of species composition and associated signalling activities in coordinating community behaviours. Conclusions: This study suggests that QQ has an important function in regulating community level QS signalling, and provides a mechanistic insight into the role of QS biology in complex community assembly.
ISSN: 2055-5008
DOI: 10.1038/npjbiofilms.2015.6
Rights: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles
NEWRI Journal Articles
SBS Journal Articles
SCELSE Journal Articles

Files in This Item:
File Description SizeFormat 
Tan 2015 npjbiofilms.pdf1.81 MBAdobe PDFThumbnail

Citations 50

Updated on Jan 16, 2021

Citations 50

Updated on Jan 19, 2021

Page view(s) 50

Updated on Jan 22, 2021

Download(s) 5

Updated on Jan 22, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.