Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/85243
Title: Fully printed flexible smart hybrid hydrogels
Authors: Zhou, Yang
Layani, Michael
Wang, Shancheng
Hu, Peng
Ke, Yujie
Magdassi, Shlomo
Long, Yi
Keywords: 3D Printing
Hydrogel
Engineering::Materials
Issue Date: 2018
Source: Zhou, Y., Layani, M., Wang, S., Hu, P., Ke, Y., Magdassi, S., & Long, Y. (2018). Fully Printed Flexible Smart Hybrid Hydrogels. Advanced Functional Materials, 28(9), 1705365-. doi:10.1002/adfm.201705365
Series/Report no.: Advanced Functional Materials
Abstract: A printable hybrid hydrogel is fabricated by embedding poly(N‐isopropylacrylamide) (PNIPAm) microparticles within a water‐rich silica‐alumina(Si/Al)‐based gel matrix. The hybrid gel holds water content of up to 70 wt%, due to its unique Si/Al matrix. The hybrid hydrogel can respond to both heat and electrical stimuli, and can be directly printed layer‐by‐layer using a commercial 3‐dimensional printer, without requiring any curing. The hybrid ink is printed onto a transparent, flexible conductive electrode composed of silver nanoparticles and sustains bending angles of up to 180°, which enables patterning of various flexible devices such as smart windows and a 3D optical waveguide valve.
URI: https://hdl.handle.net/10356/85243
http://hdl.handle.net/10220/49181
ISSN: 1616-301X
DOI: 10.1002/adfm.201705365
Rights: © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: Zhou, Y., Layani, M., Wang, S., Hu, P., Ke, Y., Magdassi, S., & Long, Y. (2018). Fully Printed Flexible Smart Hybrid Hydrogels. Advanced Functional Materials, 28(9), 1705365-. , which has been published in final form at http://dx.doi.org/10.1002/adfm.201705365. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
Fully Printed Flexible Smart Hybrid Hydrogels.pdf1.35 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.