Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/85363
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Jiaweien
dc.contributor.authorLiu, Yinanen
dc.contributor.authorMa, Junchaoen
dc.contributor.authorZhuo, Xiaoen
dc.contributor.authorPeng, Yuen
dc.contributor.authorLu, Weien
dc.contributor.authorLiu, Zhengen
dc.contributor.authorChen, Jianhaoen
dc.contributor.authorSun, Dongen
dc.date.accessioned2019-07-09T06:45:35Zen
dc.date.accessioned2019-12-06T16:02:29Z-
dc.date.available2019-07-09T06:45:35Zen
dc.date.available2019-12-06T16:02:29Z-
dc.date.issued2018en
dc.identifier.citationLai, J., Liu, Y., Ma, J., Zhuo, X., Peng, Y., Lu, W., . . . Sun, D. (2018). Broadband anisotropic photoresponse of the “hydrogen atom” version type-II Weyl semimetal candidate TaIrTe4. ACS Nano, 12(4), 4055-4061. doi:10.1021/acsnano.8b01897en
dc.identifier.issn1936-0851en
dc.identifier.urihttps://hdl.handle.net/10356/85363-
dc.description.abstractThe layered ternary compound TaIrTe4 is an important candidate to host the recently predicted type-II Weyl Fermions that break Lorentz invariance. Photodetectors based on Weyl semimetal promise extreme performance in terms of highly sensitive, broadband, and self-powered operation owing to its topologically protected band structures. In this work, we report the realization of a broadband self-powered photodetector based on TaIrTe4. The photocurrent generation mechanisms are investigated with power- and temperature-dependent photoresponse measurements. The prototype metal-TaIrTe4-metal photodetector exhibits a responsivity of 20 μA W–1 or a specific detectivity of 1.8 × 106 Jones with 27 μs response time at 10.6 μm. Broadband responses from 532 nm to 10.6 μm are experimentally tested with potential detection range extendable to far-infrared and terahertz. Furthermore, anisotropic response of the TaIrTe4 photodetector is identified using polarization-angle-dependent measurement with linearly polarized light. The anisotropy is found to be wavelength dependent, and the degree of anisotropy increases as the excitation wavelength gets closer to the Weyl nodes. Our results suggest this emerging class of materials can be harnessed for broadband, polarization angle-sensitive, self-powered photodetection with reasonable responsivities.en
dc.language.isoenen
dc.relation.ispartofseriesACS Nanoen
dc.rights© 2018 American Chemical Society. All rights reserved.en
dc.subjectEngineering::Materialsen
dc.subjectWeyl Semimetalen
dc.subjectPhotodetectoren
dc.titleBroadband anisotropic photoresponse of the “hydrogen atom” version type-II Weyl semimetal candidate TaIrTe4en
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen
dc.contributor.organizationCentre for Programmed Materialsen
dc.identifier.doi10.1021/acsnano.8b01897en
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 20

14
Updated on Jun 18, 2020

PublonsTM
Citations 10

24
Updated on Mar 4, 2021

Page view(s)

107
Updated on Jan 24, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.