Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/85435
Title: | Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing | Authors: | Hosseinloo, Ashkan Haji. Vahdati, Nader. Yap, Fook Fah. |
Issue Date: | 2012 | Source: | Hosseinloo, A. H., Vahdati, N., & Yap, F. F. (2012). Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility , 50(10), 1515-1537. | Series/Report no.: | Vehicle system dynamics : international journal of vehicle mechanics and mobility | Abstract: | Many armies are replacing heavy slow tracked vehicles with their lighter wheeled counterparts for their high mobility and better shoot and scoot capabilities. These features make the vehicle hard to track and target in counter-battery fire. However, when firing high calibre guns, spades are needed to connect the vehicle chassis to the ground, so as to transmit parts of the large firing force directly to the ground. Use of spades hinders the vehicle mobility, while elimination of them paves the way for having quicker and more mobile wheeled vehicles. In this article, vibration response of a spade-less High Mobility Multi-purpose Wheeled Vehicle with a mounted mortar is studied and controlled using stock passive, optimised passive, and optimised semi-active dampers as primary suspensions. The spade-less vehicle with optimised passive and semi-active dampers has a better response in heave, pitch, and fore-aft motions and can fire with better accuracy compared to a spade-less vehicle with stock passive dampers. Simulation results indicate that the spades can be removed from wheeled military vehicles if the precautions are taken for the tyres. | URI: | https://hdl.handle.net/10356/85435 http://hdl.handle.net/10220/11769 |
DOI: | 10.1080/00423114.2012.675076 | Schools: | School of Mechanical and Aerospace Engineering | Rights: | © 2012 Taylor & Francis. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MAE Journal Articles |
SCOPUSTM
Citations
20
11
Updated on May 3, 2025
Web of ScienceTM
Citations
20
7
Updated on Oct 31, 2023
Page view(s) 50
648
Updated on May 7, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.