Please use this identifier to cite or link to this item:
Title: Catalytically active sites on Ni5P4 for efficient hydrogen evolution reaction from atomic scale calculation
Authors: Hu, Jun
Cao, Xiaofei
Zhao, Xin
Chen, Wei
Lu, Guo-ping
Dan, Yong
Chen, Zhong
Keywords: Engineering::Materials
Nickel Phosphides
Water Splitting
Issue Date: 2019
Source: Hu, J., Cao, X., Zhao, X., Chen, W., Lu, G., Dan, Y., & Chen, Z. (2019). Catalytically Active Sites on Ni5P4 for Efficient Hydrogen Evolution Reaction From Atomic Scale Calculation. Frontiers in Chemistry, 7, 444-. doi:10.3389/fchem.2019.00444
Series/Report no.: Frontiers in Chemistry
Abstract: Ni5P4 has received considerable attention recently as a potentially viable substitute for Pt as the cathode material for catalytic water splitting. The current investigation focuses on theoretical understandings of the characteristics of active sites toward water splitting using first-principle calculations. The results indicate that the activity of bridge NiNi sites is highly related on the bond number with neighbors. If the total bond number of NiNi is higher than 14, the sites will exhibit excellent HER performance. For the top P sites, the activity is greatly affected by the position of coplanar atoms besides the bond number. Data of bond length with neighbors can be used to predict the activity of P sites as reviewed by machine learning. Partial density of state (PDOS) analysis of different P sites illustrates that the activity of P sites should form the appropriate bond to localize some 3p orbits of the P atoms. Bond number and position of neighbors are two key parameters for the prediction of the HER activity. Based on the current work, most of the low-energy surfaces of Ni5P4 are active, indicating a good potential of this materials for hydrogen evolution reactions.
DOI: 10.3389/fchem.2019.00444
Rights: © 2019 Hu, Cao, Zhao, Chen, Lu, Dan and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles


Updated on Jul 13, 2020


Updated on Nov 22, 2020

Page view(s)

Updated on Nov 28, 2020


Updated on Nov 28, 2020

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.