Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/85798
Title: | Thermodynamic trends for the adsorption of non polar gases on activated carbons employing a new adsorption isotherm modelling | Authors: | Chakraborty, Anutosh | Keywords: | Activated Carbons Adsorbate Sizes |
Issue Date: | 2016 | Source: | Chakraborty, A. (2016). Thermodynamic trends for the adsorption of non polar gases on activated carbons employing a new adsorption isotherm modelling. Applied Thermal Engineering, 105, 189-197. | Series/Report no.: | Applied Thermal Engineering | Abstract: | In this paper, the author reports a thermodynamic framework for understanding the surface – energy and the surface – structural interaction factors of activated carbons with various non polar adsorbate molecules. For better understanding, the author employs adsorption uptakes data of activated carbons and some non-polar gases such as H2, Ar, N2, CO2, O2 and CH4 to calculate the enthalpy and entropy of adsorption in pressure-temperature-uptake coordinate systems. The RMS errors are calculated with respect to the proposed model and the experimental data. The minimum RMSEs are found as the model fits well with the experimental data. From theoretical observations, the heterogeneity factors (m) are obtained 1 for microporous and 2 for mesoporous activated carbons, and the interactions of non-polar gases on activated carbons are found to be more sensitive to the adsorbent pore geometry and the adsorbate size. It is also established that the enthalpy and entropy of adsorbent – adsorbate system are closely related to the kinetic diameter of adsorbate molecules, and the pore size equivalent to adsorbate kinetic diameter is the key to store more adsorbate at low pressures. For example, the pore width of activated carbon is roughly maintained 3.8 Å for more methane storage and 3.3 Å for more CO2 captures. | URI: | https://hdl.handle.net/10356/85798 http://hdl.handle.net/10220/43835 |
ISSN: | 1359-4311 | DOI: | 10.1016/j.applthermaleng.2016.05.160 | Schools: | School of Mechanical and Aerospace Engineering | Rights: | © 2016 Elsevier Ltd. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MAE Journal Articles |
SCOPUSTM
Citations
20
18
Updated on Mar 14, 2025
Web of ScienceTM
Citations
20
14
Updated on Oct 25, 2023
Page view(s) 50
609
Updated on Mar 20, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.