Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/85997
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hu, Bo | en |
dc.contributor.author | Yuan, Junsong | en |
dc.contributor.author | Wu, Yuwei | en |
dc.date.accessioned | 2017-10-17T05:22:12Z | en |
dc.date.accessioned | 2019-12-06T16:14:04Z | - |
dc.date.available | 2017-10-17T05:22:12Z | en |
dc.date.available | 2019-12-06T16:14:04Z | - |
dc.date.issued | 2016 | en |
dc.identifier.citation | Hu, B., Yuan, J., & Wu, Y. (2016). Discriminative Action States Discovery for Online Action Recognition. IEEE Signal Processing Letters, 23(10), 1374-1378. | en |
dc.identifier.issn | 1070-9908 | en |
dc.identifier.uri | https://hdl.handle.net/10356/85997 | - |
dc.description.abstract | In this paper, we provide an approach for online human action recognition, where the videos are represented by frame-level descriptors. To address the large intraclass variations of frame-level descriptors, we propose an action states discovery method to discover the different distributions of frame-level descriptors while training a classifier. A positive sample set is treated as multiple clusters called action states. The action states model can be effectively learned by clustering the positive samples and optimizing the decision boundary of each state simultaneously. Experimental results show that our method not only outperforms the state-of-the-art methods, but also can predict the video by an on-going process with a real-time speed. | en |
dc.description.sponsorship | MOE (Min. of Education, S’pore) | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | IEEE Signal Processing Letters | en |
dc.rights | © 2016 IEEE. | en |
dc.subject | Action States | en |
dc.subject | Action Prediction | en |
dc.title | Discriminative Action States Discovery for Online Action Recognition | en |
dc.type | Journal Article | en |
dc.contributor.school | School of Electrical and Electronic Engineering | en |
dc.identifier.doi | 10.1109/LSP.2016.2598878 | en |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Appears in Collections: | EEE Journal Articles |
SCOPUSTM
Citations
6
Updated on Sep 2, 2020
PublonsTM
Citations
7
Updated on Feb 23, 2021
Page view(s)
241
Updated on Feb 28, 2021
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.