Please use this identifier to cite or link to this item:
Title: Aptamer adaptive binding assessed by stilbene photoisomerization towards regenerating aptasensors
Authors: Zhou, Yubin
Yuanyuan, Wu
Pokholenko, Oleksandr
Grimsrud, Marissa
Sham, Yuk
Papper, Vladislav
Marks, Robert
Steele, Terry
Keywords: Stilbene
Issue Date: 2017
Source: Zhou, Y., Yuanyuan, W., Pokholenko, O., Grimsrud, M., Sham, Y., Papper, V., et al. (2017). Aptamer adaptive binding assessed by stilbene photoisomerization towards regenerating aptasensors. Sensors and Actuators B: Chemical, in press.
Series/Report no.: Sensors and Actuators B: Chemical
Abstract: Fluorescent aptasensors are reliant on static fluorescence intensity measurements, which suffer drawbacks such as background interference and laborious separation procedures. A unique aptasensor based on the photochrome aptamer switch assay (PHASA) has been developed that is independent of background fluorescence, requires no analyte separation, and allows rapid quantification within seconds. Malachite green aptamer (MGA) conjugated with a water-soluble stilbene on the MGA 3′ C38 terminus was chosen for building the proof-of-concept aptasensor. In the presence of malachite green and tetramethylrosamine ligands, the rate of the stilbene fluorescence decay was found to be linearly dependent on the ligand concentration. Molecular dynamic simulation suggests hydrogen bonding between stilbene sulfonates and neighboring nucleotides is the primary mechanism responsible for rate changes in stilbene photoisomerization. Analysis of the apparent fluorescence decay rate (kapp) versus analyte concentration gives a limit of detection (LOD) of 2 μM for MG and 0.6 μM for TMR. This aptasensor design opens up a new sensing mode, which is promising for rapid development of SELEX generated molecular recognition elements.
ISSN: 0925-4005
DOI: 10.1016/j.snb.2017.10.135
Rights: © 2017 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Sensors and Actuators B: Chemical, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Citations 20

Updated on Mar 5, 2021

Citations 20

Updated on Mar 8, 2021

Page view(s)

Updated on Jan 24, 2022

Download(s) 50

Updated on Jan 24, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.