Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/86310
Title: | Simultaneous analysis of Ba and Sr to Ca ratios in scleractinian corals by inductively coupled plasma optical emissions spectrometry | Authors: | Cantarero, Sebastian I. Tanzil, Jani Thuaibah Isa Goodkin, Nathalie Fairbank |
Keywords: | Coral geochemical analysis Inductively coupled plasma optical emissions spectrometry |
Issue Date: | 2016 | Source: | Cantarero, S. I., Tanzil, J. T. I., & Goodkin, N. F. (2017). Simultaneous analysis of Ba and Sr to Ca ratios in scleractinian corals by inductively coupled plasma optical emissions spectrometry. Limnology and Oceanography: Methods, 15(1), 116-123. | Series/Report no.: | Limnology and Oceanography: Methods | Abstract: | Chemical analyses of coral skeletons are useful for reconstructing past ocean conditions. Simultaneous measurements of Ba and Sr to Ca ratios in coral samples have predominantly been achieved by inductively coupled plasma mass spectrometry (ICP-MS). We demonstrate a method that expands the application of the inductively coupled plasma optical emissions spectrometry (ICP-OES) technique to precisely analyze Ba, Sr, and Ca simultaneously. Analytical drift and matrix interferences at a range of Ba/Ca ratios (3–10 μmols/mol) were explored to determine the efficacy of standardized corrections. Minor disparity in drift and matrix interferences between standards of varying Ba/Ca ratios indicate that standardized corrections can be applied. Comparative analysis between ICP-OES and an established ICP-MS technique in a Singapore coral and international coral standard JCp-1 were utilized to validate the proposed ICP-OES technique. ICP-MS and ICP-OES techniques showed a consistent offset, which was correctible with the use of an internal lab standard and resulted in only minor differences between techniques. ICP-OES showed comparable accuracy and precision to the ICP-MS, as evaluated by analysis of JCp-1 which averaged values within one standard deviation of established concentrations (accurate to within 0.38 μmol Ba/mol Ca and 0.014 mmol Sr/mol Ca). We have demonstrated a sufficiently precise and accurate method for simultaneous analysis of Ba and Sr to Ca ratios in coral samples on an ICP-OES system. Expanding the application of ICP-OES in coral geochemical analysis provides a lower cost alternative to ICP-MS, while maintaining a high sample throughput. | URI: | https://hdl.handle.net/10356/86310 http://hdl.handle.net/10220/43977 |
ISSN: | 1541-5856 | DOI: | 10.1002/lom3.10152 | Schools: | Asian School of the Environment | Research Centres: | Earth Observatory of Singapore | Rights: | © 2016 The Authors. Limnology and Oceanography: Methods published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | EOS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Simultaneous analysis of Ba and Sr to Ca ratios in scleractinian corals by inductively coupled plasma optical emissions spectrometry.pdf | 276.92 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
20
14
Updated on Mar 7, 2025
Web of ScienceTM
Citations
20
9
Updated on Oct 24, 2023
Page view(s) 50
647
Updated on Mar 16, 2025
Download(s) 50
180
Updated on Mar 16, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.