Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/86698
Title: | Synthesis of monodisperse CeO2-ZrO2 particles exhibiting cyclic superelasticity over hundreds of cycles | Authors: | Du, Zehui Ye, Pengcheng Zeng, Xiao Mei Schuh, Christopher A. Tamura, Nobumichi Zhou, Xinran Gan, Chee Lip |
Keywords: | CeO2–ZrO2 Particles |
Issue Date: | 2017 | Source: | Du, Z., Ye, P., Zeng, X. M., Schuh, C. A., Tamura, N., Zhou, X., et al. (2017). Synthesis of monodisperse CeO2-ZrO2 particles exhibiting cyclic superelasticity over hundreds of cycles. Journal of the American Ceramic Society, 100(9), 4199-4208. | Series/Report no.: | Journal of the American Ceramic Society | Abstract: | Nano- and microscale CeO2–ZrO2 (CZ) shape memory ceramics are promising materials for smart micro-electro-mechanical systems (MEMS), sensing, actuation and energy damping applications, but the processing science for scalable production of such small volume ceramics has not yet been established. Herein, we report a modified sol-gel method to synthesize highly monodisperse spherical CZ particles with diameters in the range of ~0.8-3.0 μm. Synchrotron X-ray micro-diffraction (μSXRD) confirmed that most of the particles are single crystal after annealing at 1450°C. Having a monocrystalline structure and a small specimen length scale, the particles exhibit significantly enhanced shape memory and superelasticity properties with up to ~4.7% compression being completely recoverable. Highly reproducible superelasticity through over five hundred strain cycles, with dissipated energy up to ~40 MJ/m3 per cycle, is achieved in the CZ particles containing 16 mol% ceria. This cycling capability is enhanced by ten times compared with our first demonstration using micropillars (only 50 cycles in Lai et al, Science, 2013, 341, 1505). Furthermore, the effects of cycling and testing temperature (in 25°C-400°C) on superelasticity have been investigated. | URI: | https://hdl.handle.net/10356/86698 http://hdl.handle.net/10220/44187 |
ISSN: | 0002-7820 | DOI: | 10.1111/jace.14972 | Schools: | School of Materials Science & Engineering | Research Centres: | Temasek Laboratories | Rights: | © 2017 The American Ceramic Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of the American Ceramic Society, The American Ceramic Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1111/jace.14972]. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | TL Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Synthesis of monodisperse CeO2ZrO2 particles exhibiting cyclic superelasticity over hundreds of cycles.pdf | 3.78 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
20
22
Updated on May 3, 2025
Web of ScienceTM
Citations
20
14
Updated on Oct 27, 2023
Page view(s) 50
569
Updated on May 4, 2025
Download(s) 50
136
Updated on May 4, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.