Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/87034
Title: Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin
Authors: Seeni, Razina Z.
Yu, Xiaojun
Chang, Hao
Chen, Peng
Liu, Linbo
Xu, Chenjie
Keywords: Iron Oxide Nanoparticles
Microneedles
Issue Date: 2017
Source: Seeni, R. Z., Yu, X., Chang, H., Chen, P., Liu, L., & Xu, C. (2017). Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin. ACS Applied Materials & Interfaces, 9(24), 20340-20347.
Series/Report no.: ACS Applied Materials & Interfaces
Abstract: In recent years, polymeric microneedles (MNs) have attracted keen interests among researchers because of their applicability in transdermal drug delivery and interstitial skin fluid (ISF) extraction. When designing and characterizing such devices, it is critical to monitor their real-time in vitro and in vivo performances to optimize the desired effects, yet most of the existing methods are incapable of such functions. To address this unmet need, we develop a real-time noninvasive imaging methodology by integrating iron oxide (Fe3O4) nanoparticles into polymeric MNs to enhance image contrast for micro-optical coherence tomography (μOCT) imaging. Using the Fe3O4-integrated polystyrene-block-poly(acrylic acid) (PS-b-PAA) MNs as an example, we evaluate the influences of Fe3O4 concentrations on contrast enhancement in μOCT imaging and visualize the real-time swelling process of polymeric MNs in biological samples for the first time. Our results show that a concentration of ∼4–5 wt % Fe3O4 nanoparticles not only helps achieve the best contrast-to-noise ratio in μOCT imaging, which is 10 times higher than that without Fe3O4 nanoparticles in air and hydrogel, but also enables the real-time changes in the profile of MNs to be observed clearly in their swelling process in skin tissues. On the basis of such findings, we utilize the optimized concentration of Fe3O4 nanoparticles to further quantitatively study the swelling kinetics of PS-b-PAA MNs in agarose hydrogel and fresh skin tissues, which lasts ∼20 and ∼30–35 s, respectively. The suitability of such a methodology for enhancing μOCT imaging would greatly facilitate the development and clinical translation of MN-based medical technologies.
URI: https://hdl.handle.net/10356/87034
http://hdl.handle.net/10220/44311
ISSN: 1944-8244
DOI: 10.1021/acsami.7b00481
Schools: School of Chemical and Biomedical Engineering 
School of Electrical and Electronic Engineering 
Research Centres: NTU-Northwestern Institute for Nanomedicine 
Rights: © 2017 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by ACS Applied Materials & Interfaces, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/acsami.7b00481].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

SCOPUSTM   
Citations 20

29
Updated on Mar 14, 2025

Web of ScienceTM
Citations 20

20
Updated on Oct 29, 2023

Page view(s) 20

769
Updated on Mar 26, 2025

Download(s) 10

480
Updated on Mar 26, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.