Please use this identifier to cite or link to this item:
Title: pH change in electroosmotic flow hysteresis
Authors: Lim, Chun Yee
Lim, An Eng
Lam, Yee Cheong
Keywords: Hysteresis
Electroosmotic Flow
Issue Date: 2017
Source: Lim, C. Y., Lim, A. E., & Lam, Y. C. (2017). pH Change in Electroosmotic Flow Hysteresis. Analytical Chemistry, 89(17), 9394–9399.
Series/Report no.: Analytical Chemistry
Abstract: Electroosmotic flow (EOF) or electro-osmosis has been shown to exhibit a hysteresis effect under displacement flow involving two solutions with different concentrations, i.e. the flow velocity for a high-concentration solution displacing a low-concentration solution is faster than the flow velocity in the reverse direction involving the same solution pair. On the basis of our recent numerical analysis, a pH change initiated at the interface between the two solutions has been hypothesized as the cause for the observed anomalies. We report the first experimental evidence of EOF hysteresis induced by a pH change in the bulk solution. pH-sensitive dye was employed to quantify the pH changes in the microchannel during EOF. The electric-field gradient across the boundary of two solutions generates an accumulation or depletion of a minority of pH-governing ions such as hydronium (H3O+) ions, thus inducing pH variations across the microchannel. When a high-concentration solution displaced a lower-concentration solution, a pH increase was observed, while the flow in the reverse direction induced a decrease in pH. This effect causes significant changes to the zeta potential and flow velocity. The experimental results show good quantitative agreement with numerical simulations. This work presents the experimental proof which validates the hypothesis of a pH change during electroomostic flow hysteresis as predicted by numerical analysis. The understanding of pH changes during EOF is crucial for accurate flow manipulation in microfluidic devices and maintenance of constant pH in biological and chemical systems under an electric field.
ISSN: 0003-2700
DOI: 10.1021/acs.analchem.7b02219
Rights: © 2017 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Analytical Chemistry, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

Files in This Item:
File Description SizeFormat 
pH Change in Electroosmotic Flow Hysteresis.pdf1.23 MBAdobe PDFThumbnail

Citations 20

Updated on Oct 2, 2022

Web of ScienceTM
Citations 20

Updated on Oct 3, 2022

Page view(s) 50

Updated on Oct 6, 2022

Download(s) 50

Updated on Oct 6, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.