Please use this identifier to cite or link to this item:
Title: Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection
Authors: Hu, Xiaonan
Zhang, Daliang
Tao, Ye
Yu, Xuechao
Li, Yangyang
Liu, Zhixiong
He, Yongmin
Md. Azimul Haque
Liu, Zheng
Wu, Tom
Wang, Qi Jie
Keywords: Optical Properties And Devices
DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2018
Source: Yu, X., Li, Y., Hu, X., Zhang, D., Tao, Y., Liu, Z., . . . Wang, Q. J. (2018). Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nature Communications, 9(1), 4299-. doi:10.1038/s41467-018-06776-z
Series/Report no.: Nature Communications
Abstract: The pursuit of optoelectronic devices operating in the mid-infrared regime is driven by both fundamental interests and envisioned applications ranging from imaging, sensing to communications. Despite continued achievements in traditional semiconductors, notorious obstacles such as the complicated growth processes and cryogenic operation preclude the usage of infrared detectors. As an alternative path towards high-performance photodetectors, hybrid semiconductor/graphene structures have been intensively explored. However, the operation bandwidth of such photodetectors has been limited to visible and near-infrared regimes. Here we demonstrate a mid-infrared hybrid photodetector enabled by coupling graphene with a narrow bandgap semiconductor, Ti2O3 (Eg = 0.09 eV), which achieves a high responsivity of 300 A W−1 in a broadband wavelength range up to 10 µm. The obtained responsivity is about two orders of magnitude higher than that of the commercial mid-infrared photodetectors. Our work opens a route towards achieving high-performance optoelectronics operating in the mid-infrared regime.
DOI: 10.1038/s41467-018-06776-z
Rights: © 2018 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles
MSE Journal Articles

Citations 5

Updated on Mar 5, 2021

Citations 5

Updated on Mar 8, 2021

Page view(s)

Updated on Jan 24, 2022

Download(s) 50

Updated on Jan 24, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.