Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/89105
Title: | Modeling and integration of a lithium-Ion battery energy storage system with the more electric aircraft 270 V DC power distribution architecture | Authors: | Tariq, Mohd Gajanayake, Chandana Jayampathi Gupta, Amit K. Maswood, Ali Iftekhar |
Keywords: | DRNTU::Engineering::Electrical and electronic engineering More Electric Aircraft Li-ion Battery |
Issue Date: | 2018 | Source: | Tariq, M., Maswood, A. I., Gajanayake, C. J., & Gupta, A. K. (2018). Modeling and integration of a lithium-Ion battery energy storage system with the more electric aircraft 270 V DC power distribution architecture. IEEE Access, 6, 41785-41802. doi:10.1109/ACCESS.2018.2860679 | Series/Report no.: | IEEE Access | Abstract: | With an aim to decrease pollution level due to aviation transportation sector, aircraft industries are focusing on more electric aircraft (MEA). The design of MEA is made with an aim to reduce the CO 2 emission, noise pollution, increased comfort level for the passengers, and so on. In this paper, a detailed study of the evolution of the MEA along with the load profile for electrical load is presented. Based on the requirements of the electrical load, a high-energy-density lithium-ion “Li iron phosphate”battery is selected, designed, and modeled. The modeling is based on the modified Shepherd curve-fitting model with the addition of the voltage polarization term to have a lower complexity and more proximity with the real battery profile. The phase shifted high power bidirectional dc-dc (PSHPBD) converter is used in the battery energy storage system (BESS) as a battery charger. The modeled Li-ion battery is integrated to the 270-V dc MEA power distribution bus using the optimal harmonic number-based harmonic model of the PSHPBD converter. Since BESS has to provide the transient loads, the fast dynamic response is required for the PSHPBD converter working as the charger in the BESS. A predicted peak current-based fast response control technique is proposed in this paper for the integration of the BESS with an MEA power system architecture. The proposed control structure provides a maximum limit on the coupled inductor current to the predicted peak current value as well as it gives fast transient response desired in the MEA system. | URI: | https://hdl.handle.net/10356/89105 http://hdl.handle.net/10220/46089 |
DOI: | 10.1109/ACCESS.2018.2860679 | Schools: | School of Electrical and Electronic Engineering | Research Centres: | Rolls-Royce@NTU Corporate Lab Electrical Power Systems Integration Lab @NTU |
Rights: | © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | EEE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Modeling and Integration of a Lithium-Ion Battery Energy Storage System With the More Electric Aircraft 270 V DC Power Distribution Architecture.pdf | 2.06 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
5
69
Updated on Mar 23, 2025
Web of ScienceTM
Citations
10
43
Updated on Oct 26, 2023
Page view(s) 20
761
Updated on Mar 25, 2025
Download(s) 10
392
Updated on Mar 25, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.