Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/89107
Title: | Multitasking and the evolution of optimal clutch size in fluctuating environments | Authors: | Liu, Ming Rubenstein, Dustin R. Cheong, Siew-Ann Shen, Sheng-Feng |
Keywords: | DRNTU::Science::Physics Bet-hedging Strategy Breeding Season Length |
Issue Date: | 2018 | Source: | Liu, M., Rubenstein, D. R., Cheong, S.-A., & Shen, S.-F. (2018). Multitasking and the evolution of optimal clutch size in fluctuating environments. Ecology and Evolution, 8(17), 8803-8817. doi:10.1002/ece3.4364 | Series/Report no.: | Ecology and Evolution | Abstract: | Adaptive studies of avian clutch size variation across environmental gradients have resulted in what has become known as the fecundity gradient paradox, the observation that clutch size typically decreases with increasing breeding season length along latitudinal gradients, but increases with increasing breeding season length along elevational gradients. These puzzling findings challenge the common belief that organisms should reduce their clutch size in favor of additional nesting attempts as the length of the breeding season increases, an approach typically described as a bet‐hedging strategy. Here, we propose an alternative hypothesis—the multitasking hypothesis—and show that laying smaller clutches represents a multitasking strategy of switching between breeding and recovery from breeding. Both our individual‐based and analytical models demonstrate that a small clutch size strategy is favored during shorter breeding seasons because less time and energy are wasted under the severe time constraints associated with breeding multiply within a season. Our model also shows that a within‐generation bet‐hedging strategy is not favored by natural selection, even under a high risk of predation and in long breeding seasons. Thus, saving time—wasting less time as a result of an inability to complete a breeding cycle at the end of breeding season—is likely to be the primary benefit favoring the evolution of small avian clutch sizes during short breeding seasons. We also synthesize the seasonality hypothesis (pronounced seasonality leads to larger clutch size) and clutch size‐dependent predation hypothesis (larger clutch size causes higher predation risks) within our multitasking hypothesis to develop an integrative model to help resolve the paradox of contrasting patterns of clutch size along elevational and latitudinal gradients. Ultimately, our models provide a new perspective for understanding life‐history evolution under fluctuating environments. | URI: | https://hdl.handle.net/10356/89107 http://hdl.handle.net/10220/46120 |
DOI: | 10.1002/ece3.4364 | Schools: | School of Physical and Mathematical Sciences | Research Centres: | Complexity Institute | Rights: | © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SPMS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Multitasking and the evolution of optimal clutch size in fluctuating environments.pdf | 1.27 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
5
Updated on Mar 5, 2025
Web of ScienceTM
Citations
20
5
Updated on Oct 31, 2023
Page view(s)
413
Updated on Mar 15, 2025
Download(s) 50
99
Updated on Mar 15, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.