Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/89707
Title: | Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa | Authors: | Kohli, Gurjeet Singh Subedi, Dinesh Vijay, Ajay Kumar Rice, Scott A. Willcox, Mark |
Keywords: | DRNTU::Science::Biological sciences Virulence Traits Antibiotic Resistance |
Issue Date: | 2018 | Source: | Subedi, D., Vijay, A. K., Kohli, G. S., Rice, S. A., & Willcox, M. (2018). Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLOS ONE, 13(9), e0204936-. doi:10.1371/journal.pone.0204936 | Series/Report no.: | PLOS ONE | Abstract: | Virulent strains of Pseudomonas aeruginosa are often associated with an acquired cytotoxic protein, exoenzyme U (ExoU) that rapidly destroys the cell membranes of host cells by its phospholipase activity. Strains possessing the exoU gene are predominant in eye infections and are more resistant to antibiotics. Thus, it is essential to understand treatment options for these strains. Here, we have investigated the resistance profiles and genes associated with resistance for fluoroquinolone and beta-lactams. A total of 22 strains of P. aeruginosa from anterior eye infections, microbial keratitis (MK), and the lungs of cystic fibrosis (CF) patients were used. Based on whole genome sequencing, the prevalence of the exoU gene was 61.5% in MK isolates whereas none of the CF isolates possessed this gene. Overall, higher antibiotic resistance was observed in the isolates possessing exoU. Of the exoU strains, all except one were resistant to fluoroquinolones, 100% were resistant to beta-lactams. 75% had mutations in quinolone resistance determining regions (T81I gyrA and/or S87L parC) which correlated with fluoroquinolone resistance. In addition, exoU strains had mutations at K76Q, A110T, and V126E in ampC, Q155I and V356I in ampR and E114A, G283E, and M288R in mexR genes that are associated with higher beta-lactamase and efflux pump activities. In contrast, such mutations were not observed in the strains lacking exoU. The expression of the ampC gene increased by up to nine-fold in all eight exoU strains and the ampR was upregulated in seven exoU strains compared to PAO1. The expression of mexR gene was 1.4 to 3.6 fold lower in 75% of exoU strains. This study highlights the association between virulence traits and antibiotic resistance in pathogenic P. aeruginosa. | URI: | https://hdl.handle.net/10356/89707 http://hdl.handle.net/10220/46349 |
DOI: | 10.1371/journal.pone.0204936 | Rights: | © 2018 Subedi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCELSE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa.pdf | 1.49 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
20
25
Updated on Jan 29, 2023
Web of ScienceTM
Citations
10
24
Updated on Jan 29, 2023
Page view(s) 50
466
Updated on Feb 4, 2023
Download(s) 50
70
Updated on Feb 4, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.