Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/89798
Title: Effect of a submerged zone and carbon source on nutrient and metal removal for stormwater by bioretention cells
Authors: Wang, Mo
Zhang, Dongqing
Li, Yong
Hou, Qinghe
Yu, Yuying
Qi, Jinda
Fu, Weicong
Dong, Jianwen
Cheng, Yuning
Keywords: DRNTU::Science::Biological sciences
Bioretention
Nutrient
Issue Date: 2018
Source: Wang, M., Zhang, D., Li, Y., Hou, Q., Yu, Y., Qi, J., . . . Cheng, Y. (2018). Effect of a submerged zone and carbon source on nutrient and metal removal for stormwater by bioretention cells. Water, 10(11), 1629-. doi: 10.3390/w10111629
Series/Report no.: Water
Abstract: A bioretention system is a low-impact and sustainable treatment facility for treating urban stormwater runoff. To meet or maintain a consistently satisfactory performance, especially in terms of increasing nitrogen removal efficiency, the introduction of a submerged (anoxic) zone (SZ) combined with a module-based carbon source (C) has been recommended. This study investigated the removal of nitrogen (N), phosphorus (P) and heavy metals with a retrofitted bioretention system. A significant (p < 0.05) removal enhancement of N as well as total phosphorus (TP) was observed, in the mesocosms with additions of exogenous carbon as opposed to those without such condition. However, even in the mesocosm with SZ alone (without exogenous C), TP removal showed significant enhancement. With regard to the effects of SZ depth on nutrient removal, the results showed that the removal of both N and P in module with a shallow SZ (200 mm) showed significant enhancement compared to that in module with a deep SZ (300 mm). Removal efficiencies greater than 93% were observed for all three heavy metals tested (Cu, Pb, and Zn) in all mesocosms, even in the bioretention module without an SZ or plants, and it indicated that adsorption by the filtration media itself is probably the most important removal mechanism. Only Cu (but not Pb or Zn) showed significantly enhanced removal in module with an SZ as compared to those without an SZ. Carbon source played a minor role in metal removal as no significant (p > 0.05) improvement was observed in module with C as compared to that without C. Based on these results, the incorporation of SZ with C in stormwater biofilters is recommended.
URI: https://hdl.handle.net/10356/89798
http://hdl.handle.net/10220/47134
ISSN: 2073-4441
DOI: 10.3390/w10111629
Rights: © 2018 The Author(s). Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:NEWRI Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.