Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/89801
Title: | Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant | Authors: | Pham, Huong Thi Nhiep, Nguyen Thi Hanh Vu, Thu Ngoc Minh Huynh, TuAnh Ngoc Zhu, Yan Huynh, Anh Le Diep Chakrabortti, Alolika Marcellin, Esteban Lo, Raquel Howard, Christopher B. Bansal, Nidhi Liang, Zhao-Xun Turner, Mark S. Woodward, Joshua J. |
Keywords: | Lactococcus Mutant Osmoresistance DRNTU::Science::Biological sciences |
Issue Date: | 2018 | Source: | Pham, H. T., Nhiep, N. T. H., Vu, T. N. M., Huynh, T. N., Zhu, Y., Huynh, A. L. D., . . . Turner, M. S. (2018). Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLOS Genetics, 14(8), e1007574-. doi:10.1371/journal.pgen.1007574 | Series/Report no.: | PLOS Genetics | Abstract: | The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K+) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growth of bacteria under high osmotic conditions. To better understand how bacteria can adjust in response to excessive c-di-AMP levels and to identify signals that feed into the c-di-AMP network, we characterised genes identified in a screen for osmoresistant suppressor mutants of the high c-di-AMP Lactococcus ΔgdpP strain. Mutations were identified which increased the uptake of osmoprotectants, including gain-of-function mutations in a Kup family K+ importer (KupB) and inactivation of the glycine betaine transporter transcriptional repressor BusR. The KupB mutations increased the intracellular K+ level while BusR inactivation increased the glycine betaine level. In addition, BusR was found to directly bind c-di-AMP and repress expression of the glycine betaine transporter in response to elevated c-di-AMP. Interestingly, overactive KupB activity or loss of BusR triggered c-di-AMP accumulation, suggesting turgor pressure changes act as a signal for this second messenger. In another group of suppressors, overexpression of an operon encoding an EmrB family multidrug resistance protein allowed cells to lower their intracellular level of c-di-AMP through active export. Lastly evidence is provided that c-di-AMP levels in several bacteria are rapidly responsive to environmental osmolarity changes. Taken together, this work provides evidence for a model in which high c-di-AMP containing cells are dehydrated due to lower K+ and compatible solute levels and that this osmoregulation system is able to sense and respond to cellular water stress. | URI: | https://hdl.handle.net/10356/89801 http://hdl.handle.net/10220/46391 |
ISSN: | 1553-7390 | DOI: | 10.1371/journal.pgen.1007574 | Schools: | School of Biological Sciences | Rights: | © 2018 Pham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SBS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant.pdf | 4.23 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
10
45
Updated on Dec 8, 2023
Web of ScienceTM
Citations
10
42
Updated on Oct 26, 2023
Page view(s) 50
468
Updated on Dec 10, 2023
Download(s) 50
97
Updated on Dec 10, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.