Please use this identifier to cite or link to this item:
Title: Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals
Authors: Sun, Mingyu
Xu, Xuewu
Sun, Xiao Wei
Liang, Xin’an
Valuckas, Vytautas
Zheng, Yuanjin
Paniagua-Domínguez, Ramón
Kuznetsov, Arseniy I.
Keywords: Liquid Crystals
Engineering::Electrical and electronic engineering
Issue Date: 2019
Source: Sun, M., Xu, X., Sun, X. W., Liang, X., Valuckas, V., Zheng, Y., . . . Kuznetsov, A. I. (2019). Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals. Scientific Reports, 9(1), 8673-. doi:10.1038/s41598-019-45091-5
Series/Report no.: Scientific Reports
Abstract: All-dielectric metasurfaces have attracted attention for highly efficient visible light manipulation. So far, however, they are mostly passive devices, while those allowing dynamic control remain a challenge. A highly efficient tuning mechanism is immersing the metasurface in a birefringent liquid crystal (LC), whose refractive index can be electrically controlled. Here, an all-dielectric tunable metasurface is demonstrated based on this concept, operating at visible frequencies and based on TiO2 nanodisks embedded in a thin LC layer. Small driving voltages from 3~5 V are sufficient to tune the metasurface resonances, with an associated transmission modulation of more than 65%. The metasurface optical responses, including the observed electric and magnetic dipole resonance shifts as well as the interfacial anchoring effect of the LC induced by the presence of the nanostructures, are systematically discussed. The dynamic tuning observed in the transmission spectra can pave the way to dynamically tunable metasurface devices for efficient visible light modulation applications.
DOI: 10.1038/s41598-019-45091-5
Rights: © 2019 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
Efcient visible light modulation.pdf3.17 MBAdobe PDFThumbnail

Citations 10

Updated on Dec 2, 2022

Web of ScienceTM
Citations 10

Updated on Dec 5, 2022

Page view(s)

Updated on Dec 9, 2022

Download(s) 50

Updated on Dec 9, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.