Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/90082
Title: | Online video streaming for human tracking based on weighted resampling particle filter | Authors: | Prasad, Mukesh Chang, Liang-Cheng Gupta, Deepak Pratama, Mahardhika Sundaram, Suresh Lin, Chin-Teng |
Keywords: | Human Tracking Particle Filter Engineering::Computer science and engineering |
Issue Date: | 2018 | Source: | Prasad, M., Chang, L.-C., Gupta, D., Pratama, M., Sundaram, S., & Lin, C.-T. (2018). Online video streaming for human tracking based on weighted resampling particle filter. Procedia Computer Science, 144, 2-12. doi:10.1016/j.procs.2018.10.499 | Series/Report no.: | Procedia Computer Science | Abstract: | This paper proposes a weighted resampling method for particle filter which is applied for human tracking on active camera. The proposed system consists of three major parts which are human detection, human tracking, and camera control. The codebook matching algorithm is used for extracting human region in human detection system, and the particle filter algorithm estimates the position of the human in every input image. The proposed system in this paper selects the particles with highly weighted value in resampling, because it provides higher accurate tracking features. Moreover, a proportional–integral–derivative controller (PID controller) controls the active camera by minimizing difference between center of image and the position of object obtained from particle filter. The proposed system also converts the position difference into pan-tilt speed to drive the active camera and keep the human in the field of view (FOV) camera. The intensity of image changes overtime while tracking human therefore the proposed system uses the Gaussian mixture model (GMM) to update the human feature model. As regards, the temporal occlusion problem is solved by feature similarity and the resampling particles. Also, the particle filter estimates the position of human in every input frames, thus the active camera drives smoothly. The robustness of the accurate tracking of the proposed system can be seen in the experimental results. | URI: | https://hdl.handle.net/10356/90082 http://hdl.handle.net/10220/49423 |
ISSN: | 1877-0509 | DOI: | 10.1016/j.procs.2018.10.499 | Schools: | School of Computer Science and Engineering | Rights: | © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/). | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCSE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Online video streaming for human tracking based on weighted resampling particle filter.pdf | 1.44 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
2
Updated on Mar 17, 2025
Web of ScienceTM
Citations
50
1
Updated on Oct 26, 2023
Page view(s) 20
749
Updated on Mar 20, 2025
Download(s) 50
101
Updated on Mar 20, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.