Please use this identifier to cite or link to this item:
Title: Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro
Authors: Brown, Jessica H.
Das, Prativa
DiVito, Michael D.
Ivancic, David
Tan, Lay Poh
Wertheim, Jason A.
Keywords: Tissue Engineering
Electrospun Nanofibers
Issue Date: 2018
Source: Brown, J. H., Das, P., DiVito, M. D., Ivancic, D., Tan, L. P., & Wertheim, J. A. (2018). Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomaterialia, 73, 217-227. doi:10.1016/j.actbio.2018.02.009
Series/Report no.: Acta Biomaterialia
Abstract: A major challenge of maintaining primary hepatocytes in vitro is progressive loss of hepatocyte-specific functions, such as protein synthesis and cytochrome P450 (CYP450) catalytic activity. We developed a three-dimensional (3D) nanofibrous scaffold made from poly(l-lactide-co-glycolide) (PLGA) polymer using a newly optimized wet electrospinning technique that resulted in a highly porous structure that accommodated inclusion of primary human hepatocytes. Extracellular matrix (ECM) proteins (type I collagen or fibronectin) at varying concentrations were chemically linked to electrospun PLGA using amine coupling to develop an in vitro culture system containing the minimal essential ECM components of the liver micro-environment that preserve hepatocyte function in vitro. Cell-laden nanofiber scaffolds were tested in vitro to maintain hepatocyte function over a two-week period. Incorporation of type I collagen onto PLGA scaffolds (PLGA-Chigh: 100 µg/mL) led to 10-fold greater albumin secretion, 4-fold higher urea synthesis, and elevated transcription of hepatocyte-specific CYP450 genes (CYP3A4, 3.5-fold increase and CYP2C9, 3-fold increase) in primary human hepatocytes compared to the same cells grown within unmodified PLGA scaffolds over two weeks. These indices, measured using collagen-bonded scaffolds, were also higher than scaffolds coupled to fibronectin or an ECM control sandwich culture composed of type I collagen and Matrigel. Induction of CYP2C9 activity was also higher in these same type I collagen PLGA scaffolds compared to other ECM-modified or unmodified PLGA constructs and was equivalent to the ECM control at 7 days. Together, we demonstrate a minimalist ECM-based 3D synthetic scaffold that accommodates primary human hepatocyte inclusion into the matrix, maintains long-term in vitro survival and stimulates function, which can be attributed to coupling of type I collagen.
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2018.02.009
Rights: © 2018 Acta Materialia Inc. All rights reserved. This paper was published by Elsevier Ltd in Acta Biomaterialia and is made available with permission of Acta Materialia Inc.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:IGS Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.