Please use this identifier to cite or link to this item:
Title: Many-body density matrices on a two-dimensional square lattice : noninteracting and strongly interacting spinless fermions
Authors: Henley, Christopher L.
Cheong, Siew Ann
Keywords: DRNTU::Science::Physics::Atomic physics::Solid state physics
Issue Date: 2006
Source: Cheong, S. A., & Henley, C. L. (2006). Many-body density matrices on a two-dimensional square lattice : noninteracting and strongly interacting spinless fermions. Physical Review B., 74(4), 1-14.
Journal: Physical Review B
Series/Report no.: Physical review B
Abstract: The reduced density matrix of an interacting system can be used as the basis for a truncation scheme, or in an unbiased method to discover the strongest kind of correlation in the ground state. In this paper, we investigate the structure of the many-body fermion density matrix of a small cluster in a square lattice. The cluster density matrix is evaluated numerically over a set of finite systems, subject to non-square periodic boundary conditions given by the lattice vectors R1 = (R1x, R1y) and R2 = (R2x, R2y). We then approximate the infinite-system cluster density-matrix spectrum by averaging the finite-system cluster density matrix (i) over degeneracies in the ground state, and orientations of the system relative to the cluster, to ensure it has the proper point-group symmetry; and (ii) over various twist boundary conditions to reduce finite size effects. We then compare the eigenvalue structure of the averaged cluster density matrix for noninteracting and strongly interacting spinless fermions, as a function of the filling fraction n¯, and discuss whether it can be approximated as being built up from a truncated set of single-particle operators.
ISSN: 1098-0121
DOI: 10.1103/PhysRevB.74.165121
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
cheong2006PhysRevB74e165121.pdfPublished version235.13 kBAdobe PDFThumbnail

Citations 20

Updated on Mar 5, 2021

Page view(s) 5

Updated on Jun 26, 2022

Download(s) 20

Updated on Jun 26, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.