Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/90786
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Heimsund, Bjorn-Ove | en |
dc.contributor.author | Tai, Xue Cheng | en |
dc.contributor.author | Wang, Junping | en |
dc.date.accessioned | 2009-08-12T02:15:02Z | en |
dc.date.accessioned | 2019-12-06T17:54:00Z | - |
dc.date.available | 2009-08-12T02:15:02Z | en |
dc.date.available | 2019-12-06T17:54:00Z | - |
dc.date.copyright | 2002 | en |
dc.date.issued | 2002 | en |
dc.identifier.citation | Heimsund, B. O., Tai, X. C., & Wang, J. (2002). Superconvergence for the gradient of finite element approximations by L2-projections. SIAM Journal on Numerical Analysis, 40(4), 1263-1280. | en |
dc.identifier.issn | 0036-1429 | en |
dc.identifier.uri | https://hdl.handle.net/10356/90786 | - |
dc.description.abstract | A gradient recovery technique is proposed and analyzed for finite element solutions which provides new gradient approximations with high order of accuracy. The recovery technique is based on the method of least-squares surface fitting in a finite-dimensional space corresponding to a coarse mesh. It is proved that the recovered gradient has a high order of superconvergence for appropriately chosen surface fitting spaces. The recovery technique is robust, efficient, and applicable to a wide class of problems such as the Stokes and elasticity equations. | en |
dc.format.extent | 18 p. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | SIAM Journal on Numerical Analysis. | en |
dc.rights | SIAM Journal on Numerical Analysis © copyright 2002 Siam Society for Industrial and Applied Mathematics. The journal's website is located at http://www.siam.org/journals/sinum.php. | en |
dc.subject | DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis | en |
dc.title | Superconvergence for the gradient of finite element approximations by L2-projections | en |
dc.type | Journal Article | en |
dc.contributor.school | School of Physical and Mathematical Sciences | en |
dc.identifier.openurl | http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2002&volume=40&issue=4&spage=1263&epage=1280&aulast=Heimsund&aufirst=%20B%20%2DO&auinit=&title=SIAM%20Journal%20on%20Numerical%20Analysis&atitle=Superconvergence%20for%20the%20gradient%20of%20finite%20element%20approximations%20by%20L2%20projections&sici. | en |
dc.identifier.doi | 10.1137/S003614290037410X. | en |
dc.description.version | Published version | en |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
Appears in Collections: | SPMS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Heimsund-Tai-Wang-SCG-02.pdf | 371.48 kB | Adobe PDF | ![]() View/Open |
Page view(s) 10
595
Updated on Apr 21, 2021
Download(s) 5
453
Updated on Apr 21, 2021
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.