Please use this identifier to cite or link to this item:
Title: An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem
Authors: Cao, Bin
Chang, Chip Hong
Srikanthan, Thambipillai
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2003
Source: Cao, B., Chang, C. H., & Srikanthan, T. (2003). An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem. IEEE Transactions on Circuits And Systems-I: Fundamental Theory and Applications, 50(10), 1296-1303.
Series/Report no.: IEEE transactions on circuits and systems-I : fundamental theory and applications
Abstract: The inherent properties of carry-free operations, parallelism and fault-tolerance have made the residue number system a promising candidate for high-speed arithmetic and specialized high-precision digital signal-processing applications. However, the reverse conversion from the residues to the weighted binary number has long been the performance bottleneck, particularly when the number of moduli set increases beyond 3. In this paper, we present an elegant residue-to-binary conversion algorithm for a new 4-moduli set 2^n- 1, 2^n, 2^n +1, 2^2n +1. The new Chinese remainder theorem introduced recently has been employed to exploit the special properties of the proposed moduli set where modulo corrections are done without resorting to the costly and time consuming modulo operations. The resulting architecture is notably simple and can be realized in hardware with only bit reorientation and one multioperand modular adder. The new reverse converter has superior area-time complexity in comparison with the reverse converters for several other 4-moduli sets.
ISSN: 1057-7122
DOI: 10.1109/TCSI.2003.817789
Rights: IEEE Transactions on Circuits And Systems-I: Fundamental Theory and Applications © 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Citations 20

checked on Sep 3, 2020

Citations 50

checked on Oct 22, 2020

Page view(s) 50

checked on Oct 24, 2020

Download(s) 50

checked on Oct 24, 2020

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.