Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/91809
Title: Vibration measurement of miniature component by high-speed image-plane digital holographic microscopy
Authors: Miao, Hong
Fu, Yu
Shi, Hongjian
Keywords: DRNTU::Science::Physics::Optics and light
Issue Date: 2009
Source: Fu, Y., Shi, H., & Miao, H. (2009). Vibration measurement of miniature component by high-speed image-plane digital holographic microscopy. Applied Optics, 48(11), 1990-1997.
Series/Report no.: Applied Optics
Abstract: Measuring deformation of vibrating specimens whose dimensions are in the submillimeter range introduces a number of difficulties using laser interferometry. Normal interferometry is not suitable because of a phase ambiguity problem. In addition, the noise effect is much more serious in the measurement of small objects because a high-magnification lens is used. We present a method for full-field measurement of displacement, velocity, and acceleration of a vibrating miniature object based on image-plane digital holographic microscopy. A miniature cantilever beam is excited by a piezoelectric transducer stage with a sinusoidal configuration. A sequence of digital holograms is captured using a high-speed digital holographic microscope. Windowed Fourier analysis is applied in the spatial and spatiotemporal domains to extract the displacement, velocity and acceleration. The result shows that a combination of imageplane digital holographic microscopy and windowed Fourier analyses can be used to study vibration without encountering a phase ambiguity problem, and one can obtain instantaneous kinematic parameters on each point.
URI: https://hdl.handle.net/10356/91809
http://hdl.handle.net/10220/6473
ISSN: 0003-6935
DOI: 10.1364/AO.48.001990
Research Centres: Temasek Laboratories 
Rights: This paper was published in [Applied Optics] and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: [http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-11-1990]. Systematic or multiple reproduction or distribution to multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:TL Journal Articles

SCOPUSTM   
Citations 20

27
Updated on Apr 20, 2025

Web of ScienceTM
Citations 10

26
Updated on Oct 25, 2023

Page view(s) 1

1,521
Updated on May 4, 2025

Download(s) 5

692
Updated on May 4, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.