Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/92274
Title: Wetting transition of sessile and condensate droplets on copper-based superhydrophobic surfaces
Authors: Zhao, Yugang
Zhang, Hui
Wang, Wei
Yang, Chun
Keywords: Wetting Transition
Superhydrophobicity
Engineering::Mechanical engineering
Issue Date: 2018
Source: Zhao, Y., Zhang, H., Wang, W., & Yang, C. (2018). Wetting transition of sessile and condensate droplets on copper-based superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 127, 280-288. doi:10.1016/j.ijheatmasstransfer.2018.07.153
Series/Report no.: International Journal of Heat and Mass Transfer
Abstract: Superhydrophobic state on natural materials and synthesized surfaces has been exploited in a broad range of technologies including thermal management, water harvesting, anti-icing, and flow control. However, under certain circumstances wetting transition from Cassie’s mode to Wenzel’s mode becomes inevitable. Such wetting transition degrades the performance of superhydrophobic surfaces and limits their applicability. Here, we report distinct wetting stabilities of two copper-based superhydrophobic surfaces which are with nano-asperities (diameter ∼70 nm) of different packing density. Both the static (sessile droplet) and dynamic (dropwise condensation) wetting stabilities of the two surfaces are characterized. We show both theoretically and experimentally that sessile droplets on the surfaces of densely packed nano-asperities (pitch ∼120 nm) can remain in stable Cassie’s mode, while the wetting transition from Cassie’s mode to Wenzel’s mode occurs spontaneously on the surfaces of coarsely packed nano-asperities (pitch ∼300 nm). The apparent contact angle on the surfaces of coarsely packed nano-asperities reduces from over 150° to around 110°, and the sliding angle increases from less than 5° to over 60° within 200 s, whereas the changes of both angles on the surfaces of densely packed nano-asperities are not noticeable. We also find that in dropwise condensation, condensed droplets on the surfaces of densely packed nano-asperities maintain a stable Cassie’s mode, while condensate droplets on the surfaces of coarsely packed nano-asperities are in Wenzel’s mode. Exploiting the coupling effects of surface topography and wetting behaviors can open up existing vistas on surface engineering, leading to durable and sustainable surface design for diverse applications such as dropwise condensation and boiling heat transfer.
URI: https://hdl.handle.net/10356/92274
http://hdl.handle.net/10220/50277
ISSN: 0017-9310
DOI: 10.1016/j.ijheatmasstransfer.2018.07.153
Schools: School of Mechanical and Aerospace Engineering 
Rights: © 2018 Elsevier Ltd. All rights reserved. This paper was published in International Journal of Heat and Mass Transfer and is made available with permission of Elsevier Ltd.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

Files in This Item:
File Description SizeFormat 
Wetting transition of sessile and condensate droplets.pdf1.05 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 20

16
Updated on Mar 6, 2024

Web of ScienceTM
Citations 20

14
Updated on Oct 25, 2023

Page view(s)

273
Updated on Mar 18, 2024

Download(s) 50

99
Updated on Mar 18, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.