Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/93769
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYin, Mingen
dc.contributor.authorGoh, Dion Hoe-Lianen
dc.contributor.authorLim, Ee Pengen
dc.contributor.authorSun, Aixinen
dc.date.accessioned2010-02-19T06:32:34Zen
dc.date.accessioned2019-12-06T18:45:13Z-
dc.date.available2010-02-19T06:32:34Zen
dc.date.available2019-12-06T18:45:13Z-
dc.date.copyright2005en
dc.date.issued2005en
dc.identifier.citationYin, M., Goh, H. L., Lim, E P., & Sun, A. (2005). Discovery of concept entities from web sites using web unit mining. International Journal of Web Information Systems, 20, 1-13.en
dc.identifier.issn1744-0084en
dc.identifier.urihttps://hdl.handle.net/10356/93769-
dc.description.abstractA web site usually contains a large number of concept entities, each consisting of one or more web pages connected by hyperlinks. In order to discover these concept entities for more expressive web site queries and other applications, the web unit mining problem has been proposed. Web unit mining aims to determine web pages that constitute a concept entity and classify concept entities into categories. Nevertheless, the performance of an existing web unit mining algorithm, iWUM, suffers as it may create more than one web unit (incomplete web units) from a single concept entity. This paper presents two methods to solve this problem. The first method introduces a more effective web fragment construction method so as reduce later classification errors. The second method incorporates site-specific knowledge to discover and handle incomplete web units. Experiments show that incomplete web units can be removed and overall accuracy has been significantly improved, especially on the precision and F1 measures.en
dc.format.extent13 p.en
dc.language.isoenen
dc.relation.ispartofseriesInternational journal of web information systemsen
dc.subjectDRNTU::Engineering::Computer science and engineering::Computer systems organization::Computer-communication networksen
dc.titleDiscovery of concept entities from web sites using web unit miningen
dc.typeJournal Articleen
dc.contributor.schoolWee Kim Wee School of Communication and Informationen
dc.identifier.openurlhttp://www.emeraldinsight.com/Insight/viewContentItem.do?contentType=Article&hdAction=lnkpdf&contentId=1614095en
dc.description.versionPublished versionen
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:WKWSCI Journal Articles
Files in This Item:
File Description SizeFormat 
2005-wum-jwis.pdfMain article238.35 kBAdobe PDFThumbnail
View/Open

Page view(s) 5

1,442
Updated on Apr 20, 2025

Download(s) 5

709
Updated on Apr 20, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.