Please use this identifier to cite or link to this item:
Title: A plethora of methods for learning English countability
Authors: Baldwin, Timothy
Bond, Francis
Keywords: DRNTU::Humanities::Linguistics::Sociolinguistics::Computational linguistics
Issue Date: 2003
Source: Baldwin, T., & Bond, F. (2003). A plethora of methods for learning English countability. Proceedings of 2003 Conference on Empirical Methods in Natural Language Processing: EMNLP 2003, 73-80.
Abstract: This paper compares a range of methods for classifying words based on linguistic diagnostics, focusing on the task of learning countabilities for English nouns. We propose two basic approaches to feature representation: distribution-based representation, which simply looks at the distribution of features in the corpus data, and agreement-based representation which analyses the level of tokenwise agreement between multiple preprocessor systems. We additionally compare a single multiclass classifier architecture with a suite of binary classifiers, and combine analyses from multiple preprocessors. Finally, we present and evaluate a feature selection method.
DOI: 10.3115/1119355.1119365
Rights: © 2003 ACL. This is the author created version of a work that has been peer reviewed and accepted for publication by Proceedings of 2003 Conference on Empirical Methods in Natural Language Processing: EMNLP 2003, Association for Computational Linguistics. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:HSS Conference Papers

Files in This Item:
File Description SizeFormat 
138.79 kBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.