Please use this identifier to cite or link to this item:
Title: A SnO2 nanoparticle/nanobelt and Si heterojunction light-emitting diode
Authors: Chen, Rui
Sun, Handong
Dong, Zhili
Ling, Bo
Sun, Xiaowei
Zhao, Jun Liang
Ke, Chang
Tan, Swee Tiam
Keywords: DRNTU::Engineering::Materials::Nanostructured materials
Issue Date: 2010
Source: Ling, B., Sun, X., Zhao, J. L., Ke, C., Tan, S. T., Chen, R., & et al. (2010). A SnO2 Nanoparticle/Nanobelt and Si Heterojunction Light-Emitting Diode. Journal of Physical Chemistry C, 114 (43), 18390–18395.
Series/Report no.: Journal of physical chemistry C
Abstract: Single-crystalline zero-dimensional tin dioxide (SnO2) nanoparticles and one-dimensional SnO2 nanobelts were synthesized on silicon (Si) substrates with different seed layer coatings by simple vapor-phase transport method. The crystal structure and morphology of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman scattering spectroscopy. Both geometrically different nanostructures were further employed to fabricate the light-emitting diodes and showed dominant red and green emission bands at room temperature, which were ascribed to the deep defect states in SnO2. However, SnO2-nanobelts-based light-emitting diodes showed another violet emission peaking at ca. 400 nm which was attributed to the shallow defect state related to the surface states/defects. The different emission performance between nanoparticle and nanobelts devices was attributed to the larger surface-to-volume ratio of the nanobelts, which was confirmed by the Raman and photoluminescence analysis. A thin SiO2 intermediate layer was found to be crucial in achieving light emission from a n-SnO2/p-Si heterojunction with large valence band offset (ca. 2.96 eV), by which sufficient potential-energy difference can be maintained between SnO2 and Si, thus facilitating the tunneling injection of holes.
DOI: 10.1021/jp106650p
Rights: © 2010 American Chemical Society
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.