Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/94091
Title: | Noise injection into inputs in sparsely connected Hopfield and winner-take-all neural networks | Authors: | Wang, Lipo. | Keywords: | DRNTU::Engineering::Electrical and electronic engineering | Issue Date: | 1997 | Source: | Wang, L. (1997). Noise injection into inputs in sparsely connected Hopfield and winner-take-all neural networks. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 27(5), 868-870. | Series/Report no.: | IEEE transactions on systems, man, and cybernetics – Part B: cybernetics | Abstract: | In this paper, we show that noise injection into inputs in unsupervised learning neural networks does not improve their performance as it does in supervised learning neural networks. Specifically, we show that training noise degrades the classification ability of a sparsely connected version of the Hopfield neural network, whereas the performance of a sparsely connected winner-take-all neural network does not depend on the injected training noise. | URI: | https://hdl.handle.net/10356/94091 http://hdl.handle.net/10220/8195 |
DOI: | 10.1109/3477.623239 | Schools: | School of Electrical and Electronic Engineering | Rights: | © 1997 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/3477.623239]. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | EEE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
43. Noise injection into inputs in sparsely connected Hopfield and winner-take-all neural networks.pdf | 110.72 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
20
10
Updated on Mar 13, 2025
Web of ScienceTM
Citations
20
11
Updated on Oct 30, 2023
Page view(s) 5
1,146
Updated on Mar 16, 2025
Download(s) 5
556
Updated on Mar 16, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.