Please use this identifier to cite or link to this item:
Title: Solution structure of the DNA-binding domain of a human papillomavirus E2 protein : evidence for flexible DNA-binding regions
Authors: Fesik, Stephen W.
Egan, David A.
Holzman, Thomas F.
Petros, Andrew M.
Meadows, Robert P.
Liang, Heng
Yoon, Ho Sup
Walter, Karl
Robins, Terry
Keywords: DRNTU::Science::Biological sciences::Microbiology::Virology
Issue Date: 1996
Source: Liang, H., Petros, A. M., Meadows, R. P., Yoon, H. S., Egan, D. A., Walter, K., et al. (1996). Solution Structure of the DNA-Binding Domain of a Human Papillomavirus E2 Protein:  Evidence for Flexible DNA-Binding Regions. Biochemistry, 35(7), 2095-2103.
Series/Report no.: Biochemistry
Abstract: The three-dimensional structure of the DNA-binding domain of the E2 protein from human papillomavirus-31 was determined by using multidimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy. A total of 1429 NMR-derived distance and dihedral angle restraints were obtained for each of the 83-residue subunits of this symmetric dimer. The average root mean square deviations of 20 structures calculated using a distance geometry-simulated annealing protocol are 0.59 and 0.90 Å for the backbone and all heavy atoms, respectively, for residues 2−83. The structure of the human virus protein free in solution consists of an eight-stranded β-barrel and two pairs of α-helices. Although the overall fold of the protein is similar to the crystal structure of the bovine papillomavirus-1 E2 protein when complexed to DNA, several small but interesting differences were observed between these two structures at the subunit interface. In addition, a β-hairpin that contacts DNA in the crystal structure of the protein−DNA complex is disordered in the NMR structures, and steady-state 1H−15N heteronuclear NOE measurements indicate that this region is highly mobile in the absence of DNA. The recognition helix also appears to be flexible, as evidenced by fast amide exchange rates. This phenomenon has also been observed for a number of other DNA-binding proteins and may constitute a common theme in protein/DNA recognition.
DOI: 10.1021/bi951932w
Rights: © 1996 American Chemical Society.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SBS Journal Articles

Citations 5

Updated on Jul 21, 2020

Citations 5

Updated on Mar 6, 2021

Page view(s) 5

Updated on Jun 25, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.