Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/94204
Title: Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials
Authors: Mhaisalkar, Subodh Gautam
Seeram Ramakrishna
Zhang, Xiang
Velmurugan Thavasi
Keywords: DRNTU::Engineering::Materials
Issue Date: 2012
Source: Zhang, X., Velmurugan, T., Mhaisalkar, S. G., & Seeram, R. (2012). Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale, 4, 1707-1716.
Series/Report no.: Nanoscale
Abstract: Hollow mesoporous one dimensional (1D) TiO2 nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core–shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO2 nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer–Emmett–Teller (BET) method reveal that hollow mesoporous TiO2 nanofibers possess a high surface area of 118 m2 g−1 with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO2 nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (Jsc) are measured as 5.6% and 10.38 mA cm−2 respectively, which are higher than those of DSSC made using regular TiO2 nanofibers under identical conditions (η = 4.2%, Jsc = 8.99 mA cm−2). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO2 nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO2 nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO2 nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO2 nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO2 nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO2 nanocatalysts.
URI: https://hdl.handle.net/10356/94204
http://hdl.handle.net/10220/7810
DOI: 10.1039/C2NR11251E
Schools: School of Materials Science & Engineering 
Rights: © 2012 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Nanoscale, Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1039/C2NR11251E ]
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 5

201
Updated on Apr 21, 2025

Web of ScienceTM
Citations 1

185
Updated on Oct 27, 2023

Page view(s) 5

1,432
Updated on May 5, 2025

Download(s) 5

996
Updated on May 5, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.