Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/94301
Title: | 3D current path in stacked devices : metrics and challenges | Authors: | Kor, H. B. Infante, F. Perdu, P. Gan, C. L. Lewis, D. |
Keywords: | DRNTU::Engineering::Materials::Microelectronics and semiconductor materials | Issue Date: | 2011 | Source: | Kor, H. B., Infante, F., Perdu, P., Gan, C. L., & Lewis, D. (2011). 3D current path in stacked devices: Metrics and challenges. Paper presented at the Physical and Failure Analysis of Integrated Circuits (IPFA). | metadata.dc.contributor.conference: | International Symposium on the Physical and Failure Analysis of Integrated Circuits (18th : 2011 : Incheon) | Abstract: | Although magnetic current imaging (MCI) is useful in fault isolation of devices with 2D current distributions, MCI alone cannot give the exact information of current paths in complex 3D stacked devices. Previous work has demonstrated the ability of a simulation approach to find a short circuit in 3D geometry. This approach has been challenged in the case of dense and complex 3D current paths. In this paper, the aim is to demonstrate how we can overcome this issue by using a new simulation approach instead of the previous segment by segment approach. The new approach has been validated on a complex chip with daisy chains vertically connected by vias. From the study of the simulation of three hypothesized current paths of various current lines of interest, excluding and including the interactions with neighbouring current lines (both locally and globally), it was found that interactions of a current line with its global neighbours have very important effects, compared to no interactions or only interactions with local neighbours. By simulating all the currents, it was possible to minimize the error given by the presence of several current lines in a small volume. | URI: | https://hdl.handle.net/10356/94301 http://hdl.handle.net/10220/7250 |
DOI: | 10.1109/IPFA.2011.5992789 | Schools: | School of Materials Science & Engineering | Rights: | © 2011 IEEE. This is the author created version of a work that has been peer reviewed and accepted for publication by IEEE. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1109/IPFA.2011.5992789 . | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | MSE Conference Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Manuscript_HBKor_v6.pdf | 506.55 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
3
Updated on Nov 23, 2023
Page view(s) 1
1,432
Updated on Nov 29, 2023
Download(s) 5
569
Updated on Nov 29, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.