Please use this identifier to cite or link to this item:
Title: 3D current path in stacked devices : metrics and challenges
Authors: Kor, H. B.
Infante, F.
Perdu, P.
Gan, C. L.
Lewis, D.
Keywords: DRNTU::Engineering::Materials::Microelectronics and semiconductor materials
Issue Date: 2011
Source: Kor, H. B., Infante, F., Perdu, P., Gan, C. L., & Lewis, D. (2011). 3D current path in stacked devices: Metrics and challenges. Paper presented at the Physical and Failure Analysis of Integrated Circuits (IPFA).
metadata.dc.contributor.conference: International Symposium on the Physical and Failure Analysis of Integrated Circuits (18th : 2011 : Incheon)
Abstract: Although magnetic current imaging (MCI) is useful in fault isolation of devices with 2D current distributions, MCI alone cannot give the exact information of current paths in complex 3D stacked devices. Previous work has demonstrated the ability of a simulation approach to find a short circuit in 3D geometry. This approach has been challenged in the case of dense and complex 3D current paths. In this paper, the aim is to demonstrate how we can overcome this issue by using a new simulation approach instead of the previous segment by segment approach. The new approach has been validated on a complex chip with daisy chains vertically connected by vias. From the study of the simulation of three hypothesized current paths of various current lines of interest, excluding and including the interactions with neighbouring current lines (both locally and globally), it was found that interactions of a current line with its global neighbours have very important effects, compared to no interactions or only interactions with local neighbours. By simulating all the currents, it was possible to minimize the error given by the presence of several current lines in a small volume.
DOI: 10.1109/IPFA.2011.5992789
Schools: School of Materials Science & Engineering 
Rights: © 2011 IEEE. This is the author created version of a work that has been peer reviewed and accepted for publication by IEEE.  It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document.  The published version is available at: .
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Conference Papers

Files in This Item:
File Description SizeFormat 
Manuscript_HBKor_v6.pdf506.55 kBAdobe PDFThumbnail

Citations 50

Updated on Nov 23, 2023

Page view(s) 1

Updated on Nov 29, 2023

Download(s) 5

Updated on Nov 29, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.