Please use this identifier to cite or link to this item:
Title: Faster and improved microchip electrophoresis using a capillary bundle
Authors: Sun, Yi
Kwok, Yien Chian
Nguyen, Nam-Trung
Keywords: DRNTU::Engineering::Mechanical engineering
Issue Date: 2007
Source: Sun, Y., Kwok, Y. C., & Nguyen, N. T. (2007). Faster and Improved Microchip Electrophoresis Using a Capillary Bundle. Electrophoresis, 28(24), 4765-4768.
Series/Report no.: Electrophoresis
Abstract: Joule heating generated in capillary electrophoresis (CE) microchips is known to affect temperature gradient, electrophoretic mobility, diffusion of analytes, and ultimately the efficiency and reproducibility of the separation. One way of reducing the effect of Joule heating is to decrease the cross-section area of microchannels. Currently, due to the limit of fabrication technique and detection apparatus, the typical dimensions of CE microchannels are in the range of 50 μm to 200 μm. In this paper, we propose a novel approach of performing microchip CE in a bundle of extremely narrow channels by using photonic crystal fiber (PCF) as separation column. The PCF was simply encapsulated in a polymethylmethacrylate (PMMA) microchannel right after a T-shaped injector. CE was simultaneously but independently carried out in 54 narrow capillaries, each capillary with diameter of 3.7 μm. The capillary bundle could sustain high electric field strength up to 1000 V/cm due to efficient heat dissipation, thus faster and enhanced separation was attained.
DOI: 10.1002/elps.200700259
Rights: © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

Citations 20

Updated on Jan 23, 2023

Web of ScienceTM
Citations 20

Updated on Jan 24, 2023

Page view(s) 20

Updated on Feb 2, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.