Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/94441
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKong, Tian Fooken
dc.contributor.authorPeng, Weng Kungen
dc.contributor.authorLuong, Trung-Dungen
dc.contributor.authorNguyen, Nam-Trungen
dc.contributor.authorHan, Jongyoonen
dc.date.accessioned2012-03-29T01:17:40Zen
dc.date.accessioned2019-12-06T18:56:03Z-
dc.date.available2012-03-29T01:17:40Zen
dc.date.available2019-12-06T18:56:03Z-
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationKong, T. F., Peng, W. K., Luong, T. D., Nguyen. N.-T. & Han J. (2012). Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab on a Chip, 12, 287-294.en
dc.identifier.urihttps://hdl.handle.net/10356/94441-
dc.description.abstractThis paper reports the fabrication and characterization of an adhesive-based liquid-metal microcoil for magnetic resonance relaxometry (MRR). Conventionally, microcoils are fabricated by various techniques such as electroplating, microcontact printing and focused ion beam milling. These techniques require considerable fabrication efforts and incur high cost. In this paper, we demonstrate a novel technique to fabricate three-dimensional multilayer liquid-metal microcoils together with the microfluidic network by lamination of dry adhesive sheets. One of the unique features of the adhesive-based technique is that the detachable sample chamber can be disposed after each experiment and the microcoil can be reused without cross-contamination multiple times. The integrated microcoil has a low direct-current (DC) resistance of 0.3 Ω and a relatively high inductance of 67.5 nH leading to a high quality factor of approximately 30 at 21.65 MHz. The microcoil was characterized for 0.5 T proton MRR measurements. The optimal pulse duration, amplitude, and frequency for the 90° pulse were 131 μs, −30 dB (1.56 W) and 21.6553 MHz, respectively. In addition, we used the liquid-metal microcoil to perform a parametric study on the transverse relaxation rate of human red blood cells at different hematocrit levels. The transverse relaxation rate increases quadratically with the hematocrit level. The results from the liquid-metal microcoil were verified by measurements with a conventional solenoid coil.en
dc.format.extent15 p.en
dc.language.isoenen
dc.relation.ispartofseriesLab on a chipen
dc.rights© 2012 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Lab on a Chip, The Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1039/C1LC20853E ].en
dc.subjectDRNTU::Engineering::Mechanical engineeringen
dc.titleAdhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurementen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen
dc.identifier.doi10.1039/C1LC20853Een
dc.description.versionAccepted versionen
dc.identifier.rims163234en
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:MAE Journal Articles
Files in This Item:
File Description SizeFormat 
Liquid Metal NMR Manuscript _Words_.pdf1.3 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 10

29
Updated on Jul 21, 2020

PublonsTM
Citations 10

30
Updated on Feb 26, 2021

Page view(s) 5

817
Updated on Jul 6, 2022

Download(s) 5

461
Updated on Jul 6, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.