Please use this identifier to cite or link to this item:
Title: Copper diffusion in Ti–Si–N layers formed by inductively coupled plasma implantation
Authors: Xu, S.
Lai, M. Y.
Yakovlev, N. L.
Law, S. B.
Chen, Z.
Ee, Elden Yong Chiang
Keywords: DRNTU::Engineering::Materials::Metallic materials
Issue Date: 2006
Source: Ee, E. Y. C., Chen, Z., Law, S. B., Xu, S., Yakovlev, N. L., & Lai, M. Y. (2006). Copper diffusion in Ti-Si-N layers formed by inductively coupled plasma implantation. Applied surface science, 253 (2), 530-534.
Series/Report no.: Applied surface science
Abstract: Ternary Ti–Si–N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti–N and Si–N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti–Si–N film to form Cu–Ti and Cu–N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti–Si–N film. The sheet resistance verifies the diffusion of Cu into the Ti–Si–N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.
DOI: 10.1016/j.apsusc.2005.12.152
Rights: © 2006 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Applied Surface Science, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
26. Copper diffusion in Ti-Si-N layers formed by inductively coupled plasma implantation.pdf665.23 kBAdobe PDFThumbnail

Citations 20

Updated on Dec 28, 2021

Citations 20

Updated on Mar 3, 2021

Page view(s) 20

Updated on Jun 25, 2022

Download(s) 10

Updated on Jun 25, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.