Please use this identifier to cite or link to this item:
Title: Nanoscale morphology for high hydrophobicity of a hard sol–gel thin film
Authors: Wu, Y. L.
Zeng, X. T.
Chen, Zhong
Keywords: DRNTU::Engineering::Materials::Microelectronics and semiconductor materials::Thin films
Issue Date: 2008
Source: Wu, Y., Chen, Z., & Zeng, X. (2008). Nanoscale morphology for high hydrophobicity of a hard sol–gel thin film. Applied Surface Science, 254(21), 6952-6958.
Series/Report no.: Applied surface science
Abstract: It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol–gel technology and a low volume medium pressure (LVMP) spray process. The sol–gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol–gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures.
ISSN: 01694332
DOI: 10.1016/j.apsusc.2008.05.002
Rights: © 2008 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Applied Surface Science, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
42. Nanoscale Morphology for High Hydrophobicity of a Hard Sol-Gel Thin Film.pdf798.87 kBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.