Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/94623
Title: Rainfall and sampling uncertainties : a rain gauge perspective
Authors: Villarini, Gabriele.
Mandapaka, Pradeep V.
Krajewski, Witold F.
Moore, Robert J.
Keywords: DRNTU::Science::Physics::Meteorology and climatology
Issue Date: 2008
Source: Villarini, G., Mandapaka, P. V., Krajewski, W. F., & Moore, R. J. (2008). Rainfall and Sampling Uncertainties: A Rain Gauge Perspective. Journal of Geophysical Research, 113.
Series/Report no.: Journal of geophysical research
Abstract: Rain gauge networks provide rainfall measurements with a high degree of accuracy at specific locations but, in most cases, the instruments are too sparsely distributed to accurately capture the high spatial and temporal variability of precipitation systems. Radar and satellite remote sensing of rainfall has become a viable approach to address this problem effectively. However, among other sources of uncertainties, the remote-sensing based rainfall products are unavoidably affected by sampling errors that need to be evaluated and characterized. Using a large data set (more than six years) of rainfall measurements from a dense network of 50 rain gauges deployed over an area of about 135 km2 in the Brue catchment (south-western England), this study sheds some light on the temporal and spatial sampling uncertainties: the former are defined as the errors resulting from temporal gaps in rainfall observations, while the latter as the uncertainties due to the approximation of an areal estimate using point measurements. It is shown that the temporal sampling uncertainties increase with the sampling interval according to a scaling law and decrease with increasing averaging area with no strong dependence on local orography. On the other hand, the spatial sampling uncertainties tend to decrease for increasing accumulation time, with no strong dependence on location of the gauge within the pixel or on the gauge elevation. For the evaluation of high resolution satellite rainfall products, a simple rule is proposed for the number of rain gauges required to estimate areal rainfall with a prescribed accuracy. Additionally, a description is given of the characteristics of the rainfall process in the area in terms of spatial correlation.
URI: https://hdl.handle.net/10356/94623
http://hdl.handle.net/10220/8179
DOI: 10.1029/2007JD009214
Rights: © 2008 by the American Geophysical Union. This paper was published in Journal of Geophysical Research-Atmospheres and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The paper can be found at DOI: [http://dx.doi.org/10.1029/2007JD009214].  One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EOS Journal Articles

Files in This Item:
File Description SizeFormat 
Rainfall and sampling uncertainties A rain gauge perspective.pdf732.54 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 1

386
Updated on Mar 10, 2025

Web of ScienceTM
Citations 1

326
Updated on Oct 3, 2023

Page view(s) 5

1,372
Updated on Mar 20, 2025

Download(s) 5

997
Updated on Mar 20, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.