Please use this identifier to cite or link to this item:
Title: Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization
Authors: He, Min
Chen, Zhong
Qi, Guojun
Keywords: DRNTU::Engineering::Materials
Issue Date: 2004
Source: He, M., Chen, Z., & Qi, G. (2004). Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization. Acta Materialia, 52(7), 2047-2056.
Series/Report no.: Acta materialia
Abstract: Thermal aging is one of the accelerated tests for IC package reliability during manufacturing processes and under actual usage conditions. During the process of thermal aging, intermetallic compounds (IMC) grow continuously due to element diffusion, resulting in their morphology change and thickness increase. In this work, the solid state reaction between electroless Ni–P and two types of Sn-based solders (Sn–3.5Ag and Sn–37Pb) has been investigated. Three distinctive layers, Ni3Sn4, NiSnP and Ni3P, were found between the Sn-containing solders and Ni–P under bump metallization. The growth rates of Ni3Sn4 IMC at different temperatures were obtained from the aged samples and the activation energy of Ni3Sn4 growth was estimated. The kinetic data obtained show that the Ni3Sn4 in the Sn–3.5Ag/Ni–P joints grows much faster than with the Sn–37Pb solder under the same condition. Kirkendall voids are found inside the Ni3P layer after thermal aging. The void formation mechanism is due to net Ni out-flux into the solder area.
DOI: 10.1016/j.actamat.2003.12.042
Rights: 2004 Acta Materialia Inc. This is the author created version of a work that has been peer reviewed and accepted for publication in Acta Materialia, published by Elsevier on behalf of Acta Materialia Inc.  It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document.  The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Citations 1

Updated on Jan 24, 2023

Web of ScienceTM
Citations 1

Updated on Feb 1, 2023

Page view(s) 5

Updated on Feb 6, 2023

Download(s) 1

Updated on Feb 6, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.