Please use this identifier to cite or link to this item:
Title: Mechanical strength of thermally aged Sn-3.5Ag/Ni-P solder joints
Authors: He, Min
Chen, Zhong
Qi, Guojun
Keywords: DRNTU::Engineering::Materials
Issue Date: 2005
Source: He, M., Chen, Z., & Qi, G. (2005). Mechanical strength of thermally aged Sn-3.5Ag/Ni-P solder joints. Metallurgical and Materials Transactions A, 36(1), 65-75.
Series/Report no.: Metallurgical and materials transactions A
Abstract: This work presents an investigation on the influence of the solder/under bump metallization (UBM) interfacial reaction to the tensile strength and fracture behavior of Sn-3.5Ag/Ni-P solder joints under different thermal aging conditions. The tensile strength of Sn-3.5Ag/Ni-P solder joints decreases with aging temperature and duration. Four types of failure modes have been identified. The failure modes shift from the bulk solder failure mode in the as-soldered condition toward the interfacial failure modes. Kirkendall voids do not appear to affect the tensile strength of the joint. The volume change of Ni-P phase transformation during the thermal aging process generates high tensile stress inside the Ni-P layer; this stress causes mudflat cracks on the remaining Ni-P coating and also leads to its delamination from the underlying Ni substrate. In general, interfacial reaction and the subsequent growth of Ni3Sn4 intermetallic compound (IMC) layer during solid-state reaction are the main reasons for the decrease of tensile strength of the solder joints. The current study finds there is an empirical linear relation between the solder joint strength and the Ni3Sn4 intermetallic compound (IMC) thickness. Therefore, the IMC thickness may be used as an indication of the joint strength.
DOI: 10.1007/s11661-005-0139-7
Rights: © 2005 Springer. This is the author created version of a work that has been peer reviewed and accepted for publication by Metallurgical and Materials Transactions A, Springer. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
32. Mechanical Strength of Thermally Aged Sn-3.5AgNi-P Solder Joints.pdf1.62 MBAdobe PDFThumbnail

Citations 50

Updated on Feb 26, 2021

Citations 50

Updated on Mar 3, 2021

Page view(s) 5

Updated on Mar 5, 2021

Download(s) 5

Updated on Mar 5, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.