Please use this identifier to cite or link to this item:
Title: Experimental study on catenary action of RC beam-column subassemblages
Authors: Yu, Jun
Tan, Kang Hai
Keywords: DRNTU::Engineering::Civil engineering
Issue Date: 2010
Source: Yu, J., & Tan, K. H. (2010). Experimental study on catenary action of RC beam-column subassemblages. Third International fib Congress incorporating the PCI Annual Convention and Bridge Conference 2010, 1, pp.2020-2033.
Abstract: Catenary action is considered as the last defense of a structure to mitigate progressive collapse, provided that the remaining structure after an initial damage can develop alternate load paths and a large deformation has occurred in the affected beams and slabs. As a result, catenary action requires high continuity and ductility of joints. To investigate whether current RC structures designed according to ACI 318-05 could develop catenary action under column removal scenarios, two one-half scaled beam-column sub-assemblages with seismic and non-seismic detailing were designed and tested to complete failure, i.e. rebar fracture. The sub-assemblage consists of two end column stubs, a two-bay beam, and one middle beam-column joint at the junction of two single-bay beams. To ensure sufficient horizontal resistance, the sizes of end columns were enlarged to be rather stiff. To simplify the boundary conditions in the first batch of tests of our ongoing project and to make the test system statically determinate, two end column stubs were supported onto two horizontal restraints and one vertical restraint to simulate the encased supports. A concentrated load was applied vertically by a hydraulic actuator on the top of the middle joint using displacement control until the whole system eventually failed. The loading rate was controlled manually to simulate quasi-static structural behavior. The study provided insight not only into catenary action of sub-assemblages, but also the performance and failure mode of the middle joints, as well as the influence of two different detailing requirements. During the whole loading history, the cross-sectional internal forces at any beam locations can be evaluated according to the measured reaction forces. Finally, a simple analytical model will be used to check the mechanism of catenary action.
Rights: © 2010 Precast Prestressed Concrete Institute. This is the author created version of a work that has been peer reviewed and accepted for publication by Third International fib Congress incorporating the PCI Annual Convention and Bridge Conference, Precast Prestressed Concrete Institute. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Conference Papers

Files in This Item:
File Description SizeFormat 
Experimental study on catenary action of RC beam-column subassemblages.pdf814.15 kBAdobe PDFThumbnail

Page view(s) 5

Updated on Feb 7, 2023

Download(s) 10

Updated on Feb 7, 2023

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.