Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/95354
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKashaninejad, Naviden
dc.contributor.authorNguyen, Nam-Trungen
dc.contributor.authorChan, Weng Kongen
dc.date.accessioned2013-01-30T08:19:13Zen
dc.date.accessioned2019-12-06T19:13:16Z-
dc.date.available2013-01-30T08:19:13Zen
dc.date.available2019-12-06T19:13:16Z-
dc.date.copyright2013en
dc.date.issued2013en
dc.identifier.citationKashaninejad, N., Nguyen, N. T., & Chan, W. K. (2013). The three-phase contact line shape and eccentricity effect of anisotropic wetting on hydrophobic surfaces. Soft Matter, 9, 527-535.en
dc.identifier.urihttps://hdl.handle.net/10356/95354-
dc.description.abstractThis paper experimentally evaluates the combined effects of eccentricity, relative spacing, and viewing directions on the wetting conditions and the three-phase contact line shapes of hydrophobic surfaces patterned with discrete micropillars. Different techniques to depict the tortuosity of the contact line between the water droplet and microstructured surfaces are presented. First, square micropillars with different values of normalized eccentricity, ε*, and relative spacing, D*, were fabricated using a double casting replication technique. Subsequently, the contact angles were measured along different viewing angles by gradually rotating the sample from 0° to 180°. The contact angle distribution was found as a periodic function of the viewing angle whose period depends on the micropillar eccentricity. The results showed that anisotropy increases by increasing the micropillar eccentricity or decreasing the pillar relative spacing. However, the effect of changing the micropillar eccentricity was much more pronounced. Micropillars with ε* = 0.75 and smaller D* showed maximum degrees of anisotropic wetting and droplet distortion corresponding to 7% and 15%, respectively. Using the measured droplet aspect ratio, corrugated shapes of the three-phase contact line of the micropillars were also reconstructed. Finally, a simple yet effective semi-analytical model, based on Fourier series curve-fitting of the experimental data, was developed to describe the equilibrium 3D shape of the droplet on anisotropic surfaces. Experimental and simulation results reveal that the degrees of anisotropic wetting and droplet distortion were directly proportional to the energy barriers of the system, resulting from the noncircular corrugated shape of the three-phase contact line. The obtained results may further shed light on the underlying mechanism influencing anisotropic wetting on micropatterned surfaces.en
dc.language.isoenen
dc.relation.ispartofseriesSoft matteren
dc.rights© 2013 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Soft Matter, The Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1039/C2SM26963E].en
dc.subjectDRNTU::Engineering::Mechanical engineeringen
dc.titleThe three-phase contact line shape and eccentricity effect of anisotropic wetting on hydrophobic surfacesen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen
dc.identifier.doi10.1039/C2SM26963Een
dc.description.versionAccepted versionen
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:MAE Journal Articles
Files in This Item:
File Description SizeFormat 
c2sm26963e (Navid).pdfMain Article751.3 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 20

18
Updated on Mar 28, 2023

Web of ScienceTM
Citations 20

17
Updated on Mar 30, 2023

Page view(s) 20

567
Updated on Mar 29, 2023

Download(s) 10

424
Updated on Mar 29, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.