Please use this identifier to cite or link to this item:
Title: The three-phase contact line shape and eccentricity effect of anisotropic wetting on hydrophobic surfaces
Authors: Kashaninejad, Navid
Nguyen, Nam-Trung
Chan, Weng Kong
Keywords: DRNTU::Engineering::Mechanical engineering
Issue Date: 2013
Source: Kashaninejad, N., Nguyen, N. T., & Chan, W. K. (2013). The three-phase contact line shape and eccentricity effect of anisotropic wetting on hydrophobic surfaces. Soft Matter, 9, 527-535.
Series/Report no.: Soft matter
Abstract: This paper experimentally evaluates the combined effects of eccentricity, relative spacing, and viewing directions on the wetting conditions and the three-phase contact line shapes of hydrophobic surfaces patterned with discrete micropillars. Different techniques to depict the tortuosity of the contact line between the water droplet and microstructured surfaces are presented. First, square micropillars with different values of normalized eccentricity, ε*, and relative spacing, D*, were fabricated using a double casting replication technique. Subsequently, the contact angles were measured along different viewing angles by gradually rotating the sample from 0° to 180°. The contact angle distribution was found as a periodic function of the viewing angle whose period depends on the micropillar eccentricity. The results showed that anisotropy increases by increasing the micropillar eccentricity or decreasing the pillar relative spacing. However, the effect of changing the micropillar eccentricity was much more pronounced. Micropillars with ε* = 0.75 and smaller D* showed maximum degrees of anisotropic wetting and droplet distortion corresponding to 7% and 15%, respectively. Using the measured droplet aspect ratio, corrugated shapes of the three-phase contact line of the micropillars were also reconstructed. Finally, a simple yet effective semi-analytical model, based on Fourier series curve-fitting of the experimental data, was developed to describe the equilibrium 3D shape of the droplet on anisotropic surfaces. Experimental and simulation results reveal that the degrees of anisotropic wetting and droplet distortion were directly proportional to the energy barriers of the system, resulting from the noncircular corrugated shape of the three-phase contact line. The obtained results may further shed light on the underlying mechanism influencing anisotropic wetting on micropatterned surfaces.
DOI: 10.1039/C2SM26963E
Rights: © 2013 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Soft Matter, The Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

Files in This Item:
File Description SizeFormat 
c2sm26963e (Navid).pdfMain Article751.3 kBAdobe PDFThumbnail

Citations 20

Updated on Mar 21, 2023

Web of ScienceTM
Citations 20

Updated on Mar 22, 2023

Page view(s) 20

Updated on Mar 26, 2023

Download(s) 10

Updated on Mar 26, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.