Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Q.en
dc.contributor.authorZhang, J.en
dc.contributor.authorUtama, M. I. B.en
dc.contributor.authorPeng, B.en
dc.contributor.authorMata, Maria de laen
dc.contributor.authorArbiol, Jordien
dc.contributor.authorXiong, Qihuaen
dc.identifier.citationZhang, Q., Zhang, J., Utama, M. I. B., Peng, B., Mata, M. d. l., Arbiol, J., et al. (2012). Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Physical Review B, 85(8), 085418-.en
dc.description.abstractThe exciton-phonon coupling in high-quality cubic phase zinc telluride (ZnTe) nanorods (NRs) is investigated by resonant micro-Raman spectroscopy near the direct bandgap of ZnTe. The scattering cross section of longitudinal optical (LO) phonon is enhanced significantly in the resonant process, where the enhancement factor of LO modes is much higher than that of the transverse optical (TO) modes, indicating a dominant Fröhlich electron-phonon interaction mechanism. Up to fifth-order LO phonons are observed by resonant Raman scattering at room temperature. The Huang-Rhys factor of individual NRs—and thus the exciton-LO coupling strengths—is evaluated, showing increasing with the NR diameter. Surface optical (SO) phonon and its high-order overtones are observed between nLO and (n − 1)LO + TO for the first time, whose positions are consistent with a dielectric continuum model. Strong acoustic phonon-exciton coupling induces a high-frequency shoulder above each nLO peaks with two maxima located around 14 cm−1 and 32 cm−1, which are assigned to transverse acoustic and longitudinal acoustic phonons, respectively. The resonant multiphonon scattering process involving acoustic and LO phonons is discussed based on an exciton-intermediated cascade model, where a scattering sequence of acoustic phonon followed by LO phonons is favorable. These results advance the understanding of electron-phonon coupling and exciton scattering in quasi-one-dimensional systems, especially in the scarcely documented ZnTe compound, facilitating the development and optimization of NR-based optoelectronic devices.en
dc.relation.ispartofseriesPhysical review Ben
dc.rights© 2012 American Physical Society. This paper was published in Physical Review B and is made available as an electronic reprint (preprint) with permission of American Physical Society. The paper can be found at the following official DOI: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en
dc.titleExciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopyen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.description.versionPublished versionen
item.fulltextWith Fulltext-
Appears in Collections:EEE Journal Articles
SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
23. Exciton-phonon coupling in individual.pdf734.54 kBAdobe PDFThumbnail


Updated on Sep 2, 2020


Updated on Nov 12, 2020

Page view(s)

Updated on Nov 24, 2020


Updated on Nov 24, 2020

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.