Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHe, Hui-Xinen
dc.contributor.authorHuang, Weien
dc.contributor.authorZhang, Huaen
dc.contributor.authorLi, Qi Guangen
dc.contributor.authorLi, Sam Fong Yauen
dc.contributor.authorLiu, Zhong-Fanen
dc.identifier.citationHe, H. X., Huang, W., Zhang, H., Li, Q. G., Li, S. F. Y., & Liu, Z. F. (2000). Demonstration of high-resolution capability of chemical force titration via study of acid/base properties of a patterned self-assembled monolayer. Langmuir, 16(2), 517-521.en
dc.description.abstractAn experimental approach for probing the resolution of chemical force titration is reported here. A self-assembled monolayer (SAM) patterned with COOH and CH3 groups was used as the model surface, and its local dissociation property was studied by both chemical force titration and contact angle titration. The dissociation constant (pK1/2) estimated by chemical force titration was found to be sensitive to the surface location. In the COOH region, chemical force titration gave a pK1/2 value of 5.4, identical with the value obtained on a pure, unpatterned COOH SAM, while in the CH3 region, the force curves varied greatly from site to site even in the same pH solution, indicating the mixed film nature being originated from the microcontact printing process. In contrast, contact angle titration generates a fixed pK1/2 value of 11.0 on the patterned surface, completely different from the force titration results. This study demonstrates that chemical force titration indeed has a spatially resolved capability, with a lateral spatial resolution of better than 1 μm, and is more effective for detecting the local properties of chemically inhomogeneous surfaces.en
dc.rightsCopyright © 2000 American Chemical Society.en
dc.titleDemonstration of high-resolution capability of chemical force titration via study of acid/base properties of a patterned self-assembled monolayeren
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen
item.fulltextNo Fulltext-
Appears in Collections:MSE Journal Articles


Updated on Jun 18, 2020

Citations 50

Updated on Sep 3, 2020

Page view(s) 50

Updated on Nov 25, 2020

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.