Please use this identifier to cite or link to this item:
Title: Lipid interaction and membrane perturbation of human islet amyloid polypeptide monomer and dimer by molecular dynamics simulations
Authors: Zhang, Yun
Luo, Yin
Deng, Yonghua
Mu, Yuguang
Wei, Guanghong
Issue Date: 2012
Source: Zhang, Y., Luo, Y., Deng, Y., Mu, Y., & Wei, G. (2012). Lipid Interaction and Membrane Perturbation of Human Islet Amyloid Polypeptide Monomer and Dimer by Molecular Dynamics Simulations. PLoS ONE, 7(5).
Series/Report no.: PLoS oNE
Abstract: The aggregation of human islet amyloid polypeptide (hIAPP or amylin) is associated with the pathogenesis of type 2 diabetes mellitus. Increasing evidence suggests that the interaction of hIAPP with β-cell membranes plays a crucial role in cytotoxicity. However, the hIAPP-lipid interaction and subsequent membrane perturbation is not well understood at atomic level. In this study, as a first step to gain insight into the mechanism of hIAPP-induced cytotoxicity, we have investigated the detailed interactions of hIAPP monomer and dimer with anionic palmitoyloleolyophosphatidylglycerol (POPG) bilayer using all-atom molecular dynamics (MD) simulations. Multiple MD simulations have been performed by employing the initial configurations where the N-terminal region of hIAPP is pre-inserted in POPG bilayer. Our simulations show that electrostatic interaction between hIAPP and POPG bilayer plays a major role in peptide-lipid interaction. In particular, the N-terminal positively-charged residues Lys1 and Arg11 make a dominant contribution to the interaction. During peptide-lipid interaction process, peptide dimerization occurs mostly through the C-terminal 20–37 region containing the amyloidogenic 20–29-residue segment. Membrane-bound hIAPP dimers display a pronounced ability of membrane perturbation than monomers. The higher bilayer perturbation propensity of hIAPP dimer likely results from the cooperativity of the peptide-peptide interaction (or peptide aggregation). This study provides insight into the hIAPP-membrane interaction and the molecular mechanism of membrane disruption by hIAPP oligomers.
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0038191
Rights: © 2012 The Authors.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SBS Journal Articles

Files in This Item:
File Description SizeFormat 
18. Lipid Interaction and Membrane Perturbation.pdf756.13 kBAdobe PDFThumbnail

Citations 10

Updated on Jan 29, 2023

Web of ScienceTM
Citations 5

Updated on Jan 31, 2023

Page view(s) 20

Updated on Feb 4, 2023

Download(s) 20

Updated on Feb 4, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.